Open Geospatial Consortium Inc.

Date: 2011-Agu 18

Reference number of this document: OGC 10-??

Version: **2.0.1**

Category: OpenGIS® Discussion Paper

Editors: Ben Domenico and Stefano Nativi

CF-netCDF Data Model extension specification

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Discussion Paper and is therefore <u>not an official position</u> of the OGC membership. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an OGC Standard. Further, an OGC Discussion Paper should not be referenced as required or mandatory technology in procurements.

Document type: OpenGIS® Discussion Paper

Document subtype: Extension

Document stage: Draft proposed version 2.0.1

Document language: English

OGC 10-??

This page is intentionally left blank.

Cont	z ents Pa	ige
i.	Prefacex	ιiv
ii.	Document terms and definitions	ΧV
iii.	Submitting organizations	ιvi
iv.	Document Contributor Contact Points	. 1
v.	Revision history	. 2
vi.	Changes to the OGC Abstract Specification	. 3
vii.	Future work	. 4
1	Scope	. 7
2	Conformance	. 7
3	Normative references	. 7
4 4.1 4.2 4.2 4.2 4.2 4.2 4.2	2.2 Feature	. 8 . 8 . 9 . 9
5 5.1	Conventions	
6 6.1 6.1	NetCDF Data Model extension	10
7 7.1 7.2	CF-netCDF Data Model	12
Requi	rement 1 req/CF-netCDF/structural-adherence: Any data instantiating a concrete CF-netCDF dataset shall conform with the UML diagrams in Figure 3 and Figure 4.	14
7.3	General Conventions	
Requi	rement 2 ./req/CF-netCDF/Conventions: Any CF-netCDF Dataset that uses the CF convention shall define the global attribute Conventions to the string value "CF-1.6"	15

Requirement 3	req/CF-netCDF/NamingConventions: CF-netCDF	
Variabl	e, Dimension and Attribute names shall begin with a letter	
and be con	mposed of letters, digits, and underscores.	15
Requirement 4	req/CF-netCDF/Reserved Attribute Names: CF-netCDF	
	te names commencing with underscore ('_') shall be reserved	
for use by	the netCDF library.	15
Requirement 5	req/CF-netCDF/Standard Attribute Names: The list of CF-	
	Attribute names reported in the Appendix A of [8] shall be	
	d standard names and therefore reserved	
	CDF Variables and Standard Attributes	
	Standard names attributeg name attribute	
•		10
-	req/CF-netCDF/StandardName#1: Any CF-netCDF	
	Le shall define either a standard_name attribute or a	
_	ame attribute. Exception, this is not mandatory only for Variable	16
-		10
_	req/CF-netCDF/StandardNames#2: A standard name shall	
	o whitespace and shall be case sensitive. In addition , the set of le standard names is contained in the CF standard name table	
1	at: http://cf-pcmdi.llnl.gov/documents/cf-standard-	
-	ndard-name-table/18/cf-standard-name-table.xml	16
7.5 CF-net	CDF Dimensions and Dimensional Variables	17
Requirement 8	req/CF-netCDF/Dimensions: For any CF-netCDF	
_	e, its Dimension names shall have different names	17
Requirement 9	req/CF-netCDF/DimensionsShape: For a given spatial-temporal	
-	CDF Variable, its spatial-temporal Dimensions order shall	
appear in	the relative order T, then Z, then Y, then X. In addition, any	
	ension shall be placed to the left of the spatiotemporal dimensions	
7.5.1 Unit	s attribute	17
Requirement 10	req/CF-netCDF/Units: Any dimensional CF-netCDF	
	e (i.e. CF-netCDF Variable that represents dimensional	
± • ·	shall define a units attribute. Exception, this is not	
•	y only for Bounday Variable In addition, the units	
•	be physically equivalent (not necessarily identical) to the units for the Variable.	17
		1/
_	req/CF-netCDF/UnitsValue: any units attribute value shall	
	g that can be recognized by UNIDATA's Udunits package [9]. In exceptions are the units <i>level</i> , <i>layer</i> , and <i>sigma_level</i>	17
		1/
	req/CF-netCDF/Units#3: The units of a CF-Variable	
	onsistent with the <i>units</i> given in the <i>standard name table</i> l at:). http://cf-pcmdi.llnl.gov/documents/cf-standard-	
(,p p	

Requirement 13 req/CF-netCDF/CoordinateData: Any Variable containing coordinate data shall be: a Coordinate Variable an Auxiliary Coordinate Variable an Coordinate Variable an Auxiliary Coordinate Variable an Variable	names/standard-name-table/18/cf-standard-name-table.xml In addition , the units must also be consistent with a specified cell_methods attribute, if	10
coordinate data shall be: a Coordinate Variable an Auxiliary Coordinate Variable an Auxiliary Coordinate Variable 19 Requirement 14 req/CF-netCDF/CoordinateData/CoordinateVariable: A Coordinate Variable shall be defined for each Dimension that correspond to one dimensional space or time coordinates	one is present	
Coordinate Variable shall be defined for each Dimension that correspond to one dimensional space or time coordinates	coordinate data shall be: a Coordinate Variable an	19
Variable shall have a single Dimension whose name matches the the Variable name	Coordinate Variable shall be defined for each Dimension that	19
Requirement 17 req/CF-netCDF/CoordinateVariable/AxisAttribute#1: for any Coordinate Variable the attribute axis shall be given one of the values X, Y, Z or T. In addition these values stand for a longitude, latitude, vertical, or time axis respectively for the CF-netCDF cordinate types: LongitudeCoordinate, LatitudeCoordinate, VerticalCoordinate, TimeCoordinate	Variable shall have a single Dimension whose name matches the the	19
Coordinate Variable the attribute axis shall be given one of the values X, Y, Z or T. In addition these values stand for a longitude, latitude, vertical, or time axis respectively for the CF-netCDF cordinate types: LongitudeCoordinate, LatitudeCoordinate, VerticalCoordinate, TimeCoordinate		19
values X and Y for the axis attribute shall be used to identify horizontal coordinate variables	Coordinate Variable the attribute axis shall be given one of the values X, Y, Z or T. In addition these values stand for a longitude, latitude, vertical, or time axis respectively for the CF-netCDF cordinate types: LongitudeCoordinate, LatitudeCoordinate,	19
Coordinate Variable shall not define an attribute missing_values	values X and Y for the axis attribute shall be used to identify horizontal	19
Coordinate the units attribute values shall be: degrees_north degree_north degree_N, degrees_N degreeN degreesN. In addition, Coordinates of latitude with respect to a rotated pole should be given units of degrees, not degrees_north or equivalents,	Coordinate Variable shall not define an attribute missing_values	
Coordinate the units attribute values shall be: degrees_east degree_east degree_E, degrees_E degreeE degreesE. In addition, Coordinates of longitude with respect to a rotated pole should be given units of degrees, not degrees_east or equivalents,	Coordinate the units attribute values shall be: degrees_north degree_north degrees_N, degrees_N degreeN degreesN. In addition, Coordinates of latitude with respect to a rotated pole should be given units of degrees, not degrees_north or equivalents,	
	Requirement 21 req/CF-netCDF/LongitudeCoordinate: For any Longitude Coordinate the units attribute values shall be: degrees_east degree_east degree_E, degrees_E degreeE degreesE. In addition, Coordinates of longitude with respect to a rotated pole should	20

Requirement 22 req/CF-netCDF/VerticalCoordinatePositiveAttribute: Any Vertical Coordinate shall define the positive attribute whose	
values shall be: up down	21
Requirement 23 req/CF-netCDF/VerticalCoordinateUnitsAttribute: For any Vertical Coordinate the units attribute values shall be: units of pressure as listed in the file udunits.dat (e.g. bar, millibar, decibar, atmosphere (atm), pascal (Pa), and hPa) units of length as listed in the file udunits.dat (e.g. meter, metre, m, kilometer, km) other units listed in the file udunits.dat that may under certain circumstances reference vertical position such as units of density or temperature	
Requirement 24 req/CF-netCDF/DimensionlessVerticalCoordinate: Any Dimensioless Vertical Coordinate shall be defined in Appendix D of [8]. 22	
Requirement 25 req/CF- netCDF/DimensionlessVerticalCoordinateFormula_TermsAttribute: Any Dimensioless Vertical Coordinate shall define the formula_terms attribute. 7.6.5 Time Coordinate	
Requirement 26 req/CF-netCDF/TimeCoordinateUnitsAttribute: For any	
Time Coordinate the units attribute values shall be units of time as listed in the file udunits.dat (e.g. day or (d), hour or (hr, h), minute or (min), and second or (sec, s))	22
Requirement 27 req/CF-netCDF/TimeCoordinateCalendarAttribute: Any Time Coordinate shall define the calendar attribute In addition, the values currently defined for calendar are: gregorian or standard proleptic_gregorian noleap or 365_day all_leap or 366_day 360_day julian none	23
Requirement 28 req/CF-netCDF/TimeCoordinateNonstandardCalendar: Any Time Coordinate characterized by a nonstandard calendar shall define the month_lengths attribute to specify its calendar. In addition, the attribute value shall be for non-leap year: a vector of size 12, specifying the number of days in the months from January to December. In addition, for leap year two other attributes of the time axis shall be defined: leap_year and leap_month. 7.6.6 Auxiliary Coordinate Variable	
Requirement 29 req/CF-netCDF/AuxiliaryCoordinateVariable: An Auxiliary Coordinate Variable shall be identified by the coordinates attribute defined by a netCDF Variable. In addition, The value of the coordinates attribute is a blank separated list of the names of Auxiliary Coordinate Variables	24

7.6.7	Scalar Coordinate Variables	24
_	ent 30 req/CF-netCDF/ScalarCoordinateVariable: A Scalar ordinate Variable shall define a coordinate which is single-	
valu not :	ned. In addition, the Scalar Coordinate Variable name shall match the name of any dimension in the netCDF dataset	25 25
defin dime Coo attril supp varia gri	ent 31 req/CF-netCDF/HorizontalCRS: For any CF Variable ned on an horizontal grid not defined on latitude and longitude ensions, true latitude and longitude coordinates shall be supplied as ordinate Variables and associated via the coordinates abute. In addition: the attribute grid_mapping may be used to ply the description of the mapping between the given grid coordinate ables and the true latitude and longitude coordinates. In addition: the lid_mapping attribute takes a string value which is the name of a lid Mapping Variable	25
_	ent 32 req/CF-netCDF/GridMappingVariable: Any Grid oping Variable shall define the grid mapping name	
attri	ibute 26 Grid Cells2	
-	ent 33 req/CF-netCDF/BoundaryVariable: Any Boundary ciable shall define one more dimension than its associated	
Coo The	ordinate or Auxiliary Coordinate Variable. In addition , additional dimension shall the most rapidly varying one, and its size is maximum number of cell vertices	
shal	ent 34 req/CF-netCDF/CellMeasures: cell_measures attribute ll be a string attribute comprising a list of blank-separated pairs of words he form "measure: name"	28
dime	ent 35 req/CF-netCDF/MeasureVariable: Mesure Variable ensions shall be the same as or a subset of the dimensions of the CF ciable to which they are related	
be a "nan (def	ent 36 req/CF-netCDF/CellMethods: cell_methods attribute shall a string attribute comprising a list of blank-separated words of the form me: method". In addition, name can be: a Dimension of the variable lining the attribute), a Scalar Coordinate Variable, a valid lidard name, or the word "area". In addition, the value of method	

should be: point sum mean maximum minimum mid_range standard_deviation variance, mode median	
Requirement 37 req/CF-netCDF/DistrictSamplingGeometriesModel: Any data instantiating a concrete CF-netCDF DistrictSamplingGeometry dataset shall conform with the UML diagrams in Figure 5 and Figure 6	
Requirement 38 req/CF-netCDF/FeatureCollection: CF-netCDF Feature Collection shall contain Feature instances of the same type	32
Requirement 39 req/CF-netCDF/Feature: CF-netCDF Dataset shall contain Feature Collection variables of the same feature type	32
Requirement 40 req/CF-netCDF/FeatureTypeDimension: Any CF-netCDF Feature Collection variable implementing a Feature type shall define the Dimensions specified in Table 1. 7.9.2 Collections, instances and elements. 7.9.3 Representations of collections of features in data variables.	33
Requirement 41 req/CF-netCDF/MultidimensionalArray: Any Multidimensional Array Feature Collection shall have both an Instance Dimension and an Element Dimension	34
Requirement 42 req/CF-netCDF/RaggedArray: Any Ragged Array Feature Collection shall have a Sample Dimension. In addition, the Sample Dimension is occupied by both an Instance Dimension and an Element Dimension. 7.9.4 Orthogonal multidimensional array representation.	
Requirement 43 req/CF-netCDF/OrthogonalMultidimensionalArray: Any Feature instance of an Orthogonal Multidimensional Array Feature Collection shall have identical Coordinates along the	
Element Dimension. 7.9.5 Incomplete multidimensional array representation. 7.9.6 Contiguous ragged array representation.	35
Requirement 44 req/CF-netCDF/ ContiguousRaggedArray: Any Contiguous Ragged Array dataset shall have a Count Variable.	35
Requirement 45 req/CF-netCDF/ ContiguousRaggedArraySampleDimension: Any Count Variable shall define the attribute sample_dimension. In addition, the attribute sample_dimension names the Sample Dimension being counted. 7.9.7 Indexed ragged array representation. Requirement 46 req/CF-netCDF/IndexedRaggedArray: Any Indexed	35
Ragged Array dataset shall have an Index Variable. In addition,	

the Index Variable must be of type integer. In addition , the Index Variable must the Sample Dimension as its single dimension. 36	
Requirement 47 req/CF-netCDF/IndexedRaggedArrayInstanceDimension: Any Index Variable shall define the attribute instance_dimension. In addition, the attribute instance_dimension names the Instance Dimension characterizing the Instance Variables of the dataset	
Requirement 48 req/CF-netCDF/Feature_type: Any Ragged Array and Multidimensional Array dataset shall define an attribute feature_type. In addition, the attribute feature_type must be: "point" "timeSeries" trajectory profile timeSeriesProfile trajectoryProfile	
Requirement 49 req/CF-netCDF/FeatureCollectionCoordinates: Any Feature Collection data variable shall define an attribute coordinates.	37
Requirement 50 req/CF-netCDF/Cf_role: The attribute cf_role must be: "timeseries_id" "profile_id" "trajectory_id"	
Requirement 51 req/CF-netCDF/MissingData: Auxiliary Coordinate Variables characterizing Feature Collection shall define the attribute missing_values	37 38 38 39 39
Requirement 52 req/CF-netCDF/discreteGridPointCoverage: Any group of CF-netCDF data variables that share the same set of spatial/temporal coordinate variables shall realize ISO19123:CV_DiscreteCoverage sub-types: ISO19123:CV_DiscreteGridPointCoverage and ISO19123:CV_DiscretePointCoverage. In addition, the ISO19123:CV_CoverageFunction shall not define any interpolation method. 40 Requirement 53 req/CF-netCDF/CoverageDomain: the set of spatial/temporal	
Coordinate Variables, shared by CF-netCDF data Variables, shall realize an ISO19123:CV_DiscreteGridPointCoverage.CV_GridValueM	43

Requirement 5	4 req/CF-netCDF/DatasetCS: the CF-netCDF Coordinate
System	type, which is comprised of the set of spatial/temporal coordinate
	s shared by CF-netCDF data variables, shall realize
	23:CV_DiscreteCoverage.SC_CRS.SC_CoordinateSy
	or a subtype of it (i.e.
	23:CV_DiscreteGridPointCoverage.SC_CRS.SC_Coo
	eSystem or
	.23:CV_DiscretePointCoverage.SC_CRS.SC_Coordin
-	stem). Additionally, the spatial/temporal Coordinate
	oles and its subtypes (i.e. Vertical Coordinate, Latitude
	nate, Longitude Coordinate, Time Coordinate
	nts), and the Auxiliary Coordinate Variables shall ne related set of
	S.SC_CoordinateSystem.SC_CoordinateSystemAxis44
Requirement 5	5 req/CF-netCDF/DatasetCRS: the Grid Mapping
_	ole projection information characterizing the set of spatial/temporal
	te variables, shared by CF-netCDF data variables, shall realize
ISO191	23:CV_DiscreteCoverage.SC_CRS.SC_CoordinateSy
stem.t	type or a subtype of it
Requirement 5	6 req/CF-netCDF/DatasetRange: the CF-netCDF data
_	oles sharing the common set of spatial/temporal Coordinate
Variak	oles, shall realize one of the following objects: (a)
ISO191	23:CV_DiscreteGridPointCoverage.CV_GridValues
	c. values or a subtype of it; (b)
ISO191	.23:CV_DiscretePointCoverage.CV_PointValuePair
.value	• •
_	ometryValuePair record value(s): (a)
_	dValueMatrix.values.record entry (i.e.
	outeName, Any);(b)
_	.ntValuePair.value.record entry (i.e. AttributeName,
Any).	45
Requirement 5	7 req/CF-netCDF/DatasetRangeType: the CF-netCDF data
Variak	ples sharing a common set of spatial/temporal coordinate
variables	s/auxiliary coordinate variables, shall realize one of the following
objects:	
_	screteGridPointCoverage.RangeType.AttributesTy
- '	AttributeName, TypeName) or a subtype of it; (b)
_	scretePointCoverage.RangeType.AttributesType
(i.e. At	tributeName, TypeName) or a subtype of it45
Requirement 5	8 req/CF-netCDF/DatasetParametricRange: the CF-netCDF
	ary Coordinate Variables (part of the dataset shared
	te system) which are not space or time dimension, shall realize one llowing objects: (a)

		3:CV_DiscreteGridPointCoverage.CV_GridValues
		values or a subtype of it; (b)
	ISO19123	3:CV_DiscretePointCoverage.CV_PointValuePair
	.value	45
Requir	ement 50	req/CF-netCDF/DatasetParametricRangeType: the CF-
_		xiliary Coordinate Variables (part of the dataset
		rdinate system) which are not space or time dimension, shall
		1
		of the following objects: (a)
	_	reteGridPointCoverage.RangeType.AttributesTy
	- '	ttributeName, TypeName) or a subtype of it; (b)
	_	retePointCoverage.RangeType.AttributesType
	(i.e. Attr	ibuteName, TypeName)46
Requir	ement 60	req/CF-netCDF/MeasureVariableMapping#1: any CF-
-		easure Variable (characterising a CF Variable) shall
		of the following objects: (a)
		3:CV DiscreteGridPointCoverage.CV GridValues
		values or a subtype of it; (b)
		3:CV DiscretePointCoverage.CV PointValuePair
	.value	
_		req/CF-netCDF/MeasureVariableMapping#2: any CF-
		easure Variable (characterising a CF Variable) shall
		of the following objects: (a)
		reteGridPointCoverage.RangeType.AttributesTy
	pe (i.e. A	ttributeName, TypeName) or a subtype of it; (b)
	CV_Discr	retePointCoverage.RangeType.AttributesType
	(i.e. Attr	ibuteName, TypeName)
Requir	oment 62	req/CF-netCDF/DiscreteSamplingGeometriesMapping#1:
-		tCDF Ragged Array shall realize
	=	
		3:CV_DiscreteCoverage sub-type
		B:CV_DiscreteGridPointCoverage In addition, the
		3:CV_CoverageFunction shall not define any interpolation
	method.	47
Requir	ement 63	req/CF-netCDF/DiscreteSamplingGeometriesMapping#2:
_		tCDF Multidimensional Array shall realize
	•	3:CV DiscreteCoverage sub-types:
		3:CV DiscreteGridPointCoverage or
		3:CV DiscretePointCoverage. In addition , the
		_
		3:CV_CoverageFunction shall not define any interpolation
	method.	47
	ement 64	
	netCDF/M	[ultidimensionalArrayFeatureCollectionMapping#1: Any CF-
	netCDF Mu	ltidimensional Array Feature Collection shall
	realize one	of the following objects: (a)

ISO19123:CV_DiscreteGridPointCoverage.CV_GridValues Matrix. values or a subtype of it; (b) ISO19123:CV_DiscretePointCoverage.CV_PointValuePair .value 48	
Requirement 65 req/CF-netCDF/ MultidimensionalArrayFeatureCollectionMapping#2: Any CF-netCDF Multidimensional Array Feature Collection shall realize one of the following objects: (a) CV_DiscreteGridPointCoverage.RangeType.AttributesTy pe (i.e. AttributeName, TypeName) or a subtype of it; (b) CV_DiscretePointCoverage.RangeType.AttributesType (i.e. AttributeName, TypeName) or a subtype of it	48
Requirement 66 req/CF-netCDF/RaggedArrayFeatureCollectionMapping#1: Any CF-netCDF Multidimensional Array Feature Collection shall realize an ISO19123:CV_DiscretePointCoverage.CV_PointValuePair .value or a subtype of it	48
Requirement 67 req/CF-netCDF/RaggedArrayFeatureCollectionMapping#2: Any CF-netCDF Ragged Array Feature Collection shall realize an ISO10123:CV_DiscretePointCoverage.RangeType.AttributesType (i.e. AttributeName, TypeName) or a subtype of it	48
9 Bibliography	56
Annex A (normative) Abstract test suite	58
Figures Pa	age
Figure 1 - NetCDF core data model [1]	10
Figure 2 - CF-netCDF data model extension packages	12
Figure 3 - CF-netCDF data model: CF Variable and Standard Attributes	13
Figure 4 - CF-netCDF data model: CF Coordinate Variables, Coordinate Typ Coordinate Systems, and Grid Cells	es,
Figure 5 - Discrete Sampling Geometries data model: context	31
Figure 6 - Discrete Sampling Geometries data model: data representations	32
Figure 7. CF-netCDF dataset mapping to ISO coverage types	40
Figure 8. ISO19123:CV DiscretePointCoverage data model	41

Figure 9. ISO19123:CV_DiscreteGridPointCoverage data model 42
Figure 10. CF-netCDF dataset mapping ISO19123:CV_DiscreteCoverage 43
Figure 11 - CF-netCDF Discrete Sampling Geometries mapping ISO19123: DiscreteCoverage 47
Tables Page
Table 1 - Mandatory dimensions for Feature Type
Table 2. Summary of relationships between CF-netCDF3 and CV_DiscreteGridPointCoverage models: main packages 49
Table 3. Summary of relationship between CF-netCDF and CV_DiscreteCoverage models: Coverage Function package 50
Table 4. Summary of relationship between the CF-netCDF and the DiscreteCoverage profile models: Coordinate System package
Table 6. Summary of relationship between the CF-netCDF and the DiscreteCoverage profile models: Discrete Sampling Geometries package

i. Preface

This Discussion Paper describes a draft standard: an extension of the "netCDF core" Data Model specification: OGC 10-090 [1].

Suggested additions, changes, and comments on this draft standard are welcome and encouraged. Such suggestions may be submitted by email message or by making suggested changes in an edited copy of this document.

ii. Document terms and definitions

This document uses the standard terms defined in Subclause 5.3 of [OGC 06-121r9], which is based on the ISO/IEC Directives, Part 2. Rules for the structure and drafting of International Standards. In particular, the word "shall" (not "must") is the verb form used to indicate a requirement to be strictly followed to conform to this standard.

iii. Submitting organizations

The following organizations have submitted this Specification to the Open GeoSpatial Consortium, Inc.:

- The University Corporation for Atmospheric Research (UCAR)
- The National Research Council of Italy (CNR)
- The PIN –University of Florence

iv. Document Contributor Contact Points

All questions regarding this document should be directed to the editors:

Name	Organization
Ben Domenico	UCAR/Unidata
Stefano Nativi	CNR and PIN –Univ. of Florence

v. Revision history

Date	Release	Editor	Primary clauses modified	Description
2010-08-09	1.0.0	Stefano Nativi and Ben Domenico	All	Created
2010-09-10	1.1.0	Stefano Nativi	All	Extended to Multi-point coverages
2011-05-25	2.0	Stefano Nativi	CF conventions	Modified the CF convention data model and related sections to be compliant with version 1.5
2011-08-09	2.0.1	Stefano Nativi	CF conventions	Modified the CF convention data model and related sections to be compliant with version 1.6

vi. Changes to the OGC Abstract Specification

The OpenGIS® Abstract Specification does not require any changes to accommodate the technical contents of this document.

vii. Future work

Improvements in this document are desirable to support changes and additions to CF conventions and netCDF binary and XML encodings. However, it is important that CF and netCDF remain "loosely coupled" in the sense that each can change and evolve without having to rewrite the other each time.

In particular, this extension standard encoding profile is limited to multi-point, and regular and warped grids; however, irregular grids are important in the CF-netCDF community and work is underway to expand the CF-netCDF to encompass other coverages types, including irregular gridded datasets. The current plan is to include these augmentations in subsequent versions of this standard extension.

This specification is written for netCDF version 3, but netCDF version 4 is now being released. Currently the plan is to submit a separate extension standard for CF-netCDF version 4 as it becomes more heavily used in the community.

Foreword

This document is an extension of the "netCDF core" Data Model specification: OGC 10-090 [1].

This specification deals with: multi-dimensional gridded data and multi-dimensional multi-point data.

The data model specified by this document can be encoded using the "NetCDF Binary Encoding Extension Standard: NetCDF Classic and 64-bit Offset Format" [OGC 10-092].

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide supporting documentation.

Introduction

The OGC netCDF encoding supports electronic encoding of geospatial data, that is, digital geospatial information representing space and time-varying phenomena.

NetCDF (network Common Data Form) is a data model for array-oriented scientific data, a freely distributed collection of access libraries implementing support for that data model, and a machine-independent format. Together, the interfaces, libraries, and format support the creation, access, and sharing of multi-dimensional scientific data.

This document specifies the CF-netCDF data model extension; every CF-netCDF dataset shall adhere to this specification.

CF-netCDF encoding format is netCDF conforming to the Climate and Forecast (CF) conventions (i.e. CF-netCDF). This specification is based on the netCDF (network Common Data Form) ver. 3.0 file format using the CF (Climate and Forecast) conventions ver. 1.6

For the scope of this specification, CF-netCDF data model deals with multi-dimensional discrete coverage data.

CF-netCDF data model extension

1 Scope

This document specifies the CF-netCDF data model extension.

This standard specifies the CF-netCDF data model mapping onto the ISO 19123 coverage schema.

This specification deals with multi-dimensional gridded data and multi-dimensional multi-point data.

2 Conformance

Standardization target are CF-netCDF implementations (currently encodings).

This document establishes three requirements classes:

- 1. *CF-netCDF core*, of http://www.opengis.net/spec/netCDF data-model/req/CF-netCDF-1.6-core
- 2. *CF-netCDF Discrete Sampling*, of http://www.opengis.net/spec/netCDF data-model/req/CF-netCDF-1.6-DiscreteSampling
- 3. *CF-netCDF Mapping onto ISO 19123*, of http://www.opengis.net/spec/netCDF_data-model/req/CF-netCDF-1.6-ISOMapping

and three corresponding pertaining conformance class, CF-netCDF, with URIs:

- 1. http://www.opengis.net/spec/netCDF_data-model/conf/CF-netCDF-1.6-core.
- 2. http://www.opengis.net/spec/ netCDF data-model/conf/CF-netCDF-1.6-DiscreteSampling
- 3. http://www.opengis.net/spec/ netCDF_data-model/conf/CF-netCDF-1.6- ISOMapping

Requirements and conformance test URIs defined in this document are relative to http://www.opengis.net/spec/netCDF_data-model/.

Annex A lists the conformance tests which shall be exercised on any software artifact claiming to implement an OGC CF-netCDF extension for netCDF.

3 Normative references

This *OGC CF-netCDF Data Model extension* specification consists of the present document. The complete specification is identified by OGC URI http://www.opengis.net/spec/netCDF data-model/IS/CF-netCDF/.

The complete specification is available for download from http://www.opengis.net/spec/netCDF_data-model/.

The following normative documents contain provisions that, through reference in this text, constitute provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. For undated references, the latest edition of the normative document referred to applies.

OGC 10-090, NetCDF Core version 1.0

Conformance classes used:

core

OGC 10-092, NetCDF Binary Encoding Extension Standard: NetCDF Classic and 64-bit Offset Format version 1.0

Conformance classes used:

- netCDF classic
- netCDF 64-bit

For this specification, there is one external normative document contain provisions that are quoted verbatim in this text and hence constitute provisions of this specification:

NASA ESDS-RFC-021v0.02, CF Metadata Conventions, April 2010. Available at:

http://www.esdswg.org/spg/rfc/esds-rfc-021/ESDS-RFC-021-v0.01.pdf

An overview of this specification is provided by [18].

4 Terms and definitions

For the purposes of this document, the terms and definitions given in the above references apply. In addition, the following terms and definitions apply.

4.1 CDL syntax

The ASCII format used to describe the contents of a netCDF file is called CDL (network Common Data form Language). This format represents arrays using the indexing conventions of the C programming language, i.e., index values start at 0, and in multidimensional arrays, when indexing over the elements of the array, it is the last declared dimension that is the fastest varying in terms of file storage order. The netCDF utilities *ncdump* and *ncgen* use this format.

4.2 Coverage

feature that acts as a function to return values from its range for any direct position within its spatiotemporal domain [OGC 07-111]

4.2.1 **Data Model**

a description of the organization of data in a manner that reflects an information structure [ISO/IEC 11179-1 Specification and standardization of data elements – Part 1: Framework]

NOTE: netCDF literature reports the following definition for data model: a way of thinking about scientific data by applying a data model theory. It is an abstraction that describes how datasets are represented and used. In computer terms, a data model can be thought of as equivalent to an abstract object model in Object Oriented Programming in that an abstract data model describes data objects and what methods can be used on them.

4.2.2 Feature

abstraction of real world phenomena [4].

NOTE A feature may occur as a type or an instance.

4.2.3 **Grid**

network composed of two or more sets of curves in which the members of each set intersect the members of the other sets in a algorithmic way [4].

NOTE: the curves partition a space into grid cells.

4.2.4 Multi-point coverage

A discrete coverage which is characterized by a finite domain consisting of points. Generally, the domain is a set of irregularly distributed points.

A set of hydrographic soundings is an example of a discrete point coverage.

4.2.5 NetCDF

NetCDF is a standard for data on complex grids –curvilinear in XY; sigma and density-related in Z; climatological and artificial calendars in T; and heading towards "tile mosaics" and 5D forecast ensembles in the near future.

5 Conventions

5.1 Namespace prefix conventions

The following namespaces are used in this document. The prefix abbreviations used constitute conventions used here, but are **not** normative. The namespaces to which the prefixes refer are normative, however.

— Namespace mappings

Prefix	Namespace URI	Description
xsd	http://www.w3.org/2001/XMLSchema	XML Schema
gml	http://www.opengis.net/gml/3.2	GML 3.2.1
ncml	http://unidata.ucar.edu/ncml	ncML schema

6 NetCDF Data Model extension

A formal specification of the netCDF data model is provided by [1]; while, [2] provides a general description of the netCDF technology.

For reader's convenience, the netCDF core data model is shown in Figure 1.

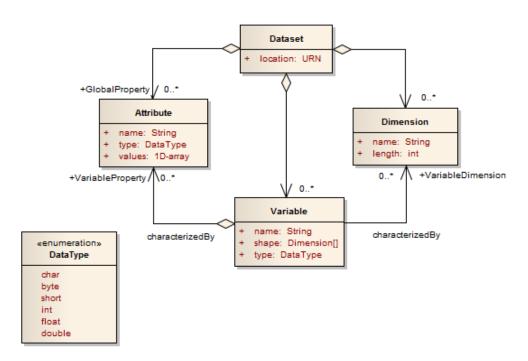


Figure 1 - NetCDF core data model [1]

6.1 CF Conventions

The purpose of the CF conventions is to require conforming datasets to contain sufficient metadata that they are self-describing in the sense that each variable in the file has an associated description of what it represents, including physical units if appropriate, and that each value can be located in space (relative to earth-based coordinates) and time.

This enables users of data from different sources to decide which quantities are comparable, and facilitates building applications with powerful extraction, regridding, and display capabilities. This specification considers version 1.6 of the CF conventions. The full CF Conventions reference documentation is provided in [8] and [16]. For this specification, provisions were given by [18].

6.1.1 **Introduced Requirements**

Most of the introduced requirements are taken from the "CF Conformance Requirements and Recommendations" published by the Program for Climate Model Diagnosis & Intercomparison (PCMDI) [10], from the "NetCDF Climate and Forecast (CF) Metadata

Conventions, Version 1.5" [8], and from "NetCDF Climate and Forecast (CF) Metadata Conventions, Version 1.6 -Chapter 9" [16].

For interoperability sake, the following requirement section specifies a CF 1.6 profile by restricting some of the original specifications –i.e. by transforming most of the recommendations into mandatory requirements.

7 CF-netCDF Data Model

7.1 Extension packages

As depicted in Figure 2, the following extension packages are modeled by this specification:

- General conventions;
- Variables and Standard attributes conventions;
- Dimensions and Dimensional Variables conventions;
- Coordinate Variables and Coordinate Types conventions;
- Coordinate Systems convention;
- Discrete Sampling Geometries.

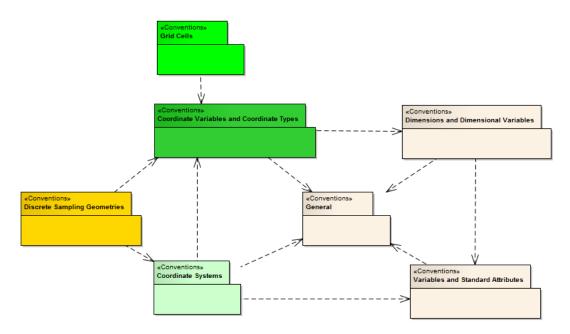


Figure 2 - CF-netCDF data model extension packages

7.2 Extension Data Model

For the scope of this specification, the CF-netCDF data model is shown in Figure 3 and Figure 4.

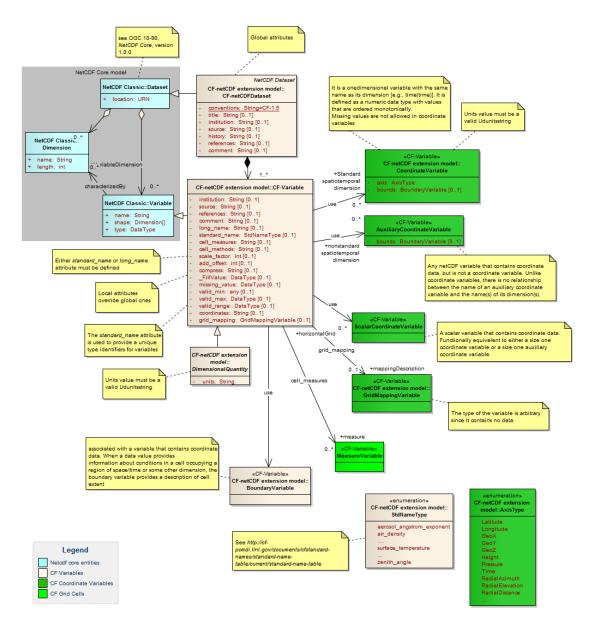


Figure 3 - CF-netCDF data model: CF Variable and Standard Attributes

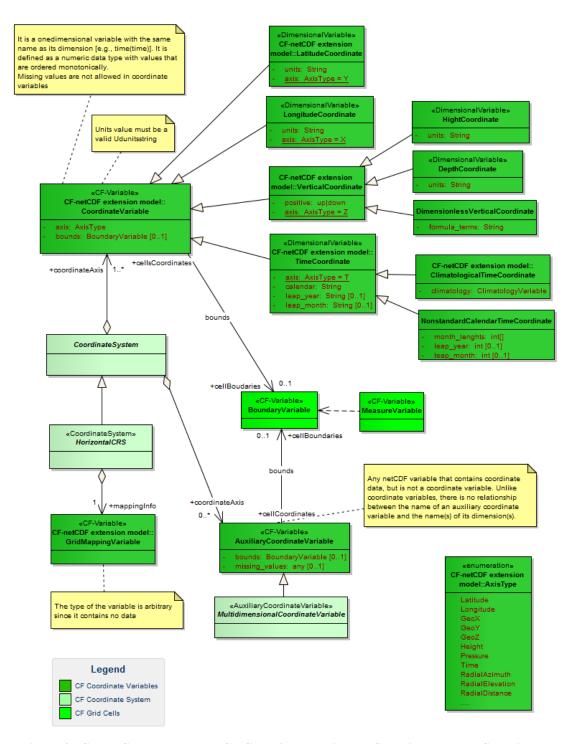


Figure 4 - CF-netCDF data model: CF Coordinate Variables, Coordinate Types, Coordinate Systems, and Grid Cells

Requirement 1 /req/CF-netCDF/structural-adherence: Any data instantiating a concrete CF-netCDF dataset shall conform with the UML diagrams in Figure 3 and Figure 4Figure 1.

7.3 General Conventions

To identify that the file uses the CF convention, the Conventions global attribute shall be given the string value of "CF-1.6"

Requirement 2 ./req/CF-netCDF/Conventions: Any CF-netCDF Dataset that uses the CF convention shall define the global attribute Conventions to the string value "CF-1.6".

Variable, dimension, and attribute names should begin with a letter and be composed of letters, digits, and underscores.

Requirement 3 /req/CF-netCDF/NamingConventions: CF-netCDF Variable, Dimension and Attribute names **shall** begin with a letter and be composed of letters, digits, and underscores.

Names commencing with underscore ('_') are reserved for use by the netCDF library. Most generic applications that process netCDF datasets assume standard attribute conventions.

Requirement 4 /req/CF-netCDF/Reserved Attribute Names: CF-netCDF Attribute names commencing with underscore ('_') shall be reserved for use by the netCDF library.

Requirement 5 /req/CF-netCDF/Standard Attribute Names: The list of CF-netCDF Attribute names reported in the Appendix A of [8] shall be considered standard names and therefore reserved.

7.4 CF-netCDF Variables and Standard Attributes

Each variable in a netCDF file has an associated description which is provided by the attributes units, long_name, and standard_name. The units, and long_name attributes are defined in the netCDF User Guide document [7] and the standard_name attribute is defined in the CF conventions document [8].

Example of units, standard and long name values (CDL syntax):

```
netcdf temperature {
  dimensions:
    lat = 45;
    lon = 57;
    variables:
```

```
double lat(lat);
    lat:standard_name="latitude";
    lat:long_name="latitude";
    lat:units="degrees_north";
    double lon(lon);
    lon:standard_name="longitude";
    lon:long_name="longitude";
    lon:units="degrees_east";

    double temperature(lon, lat);
    temperature:standard_name="air_temperature";
    temperature:long_name="temperature";
    temperature:units="K";
}
```

7.4.1 **CF Standard names attribute**

A fundamental requirement for exchange of scientific data is the ability to describe precisely the physical quantities being represented. The standard_name attribute is the name used to identify the physical quantity. It is used to provide unique identifiers for variables. *CF standard names* conventions describe what the numbers in a netCDF dataset represent; e.g., temperature, pressure, wind speed, salinity, radiance, reflectivity. Besides, this attribute can be used to identify variables that contain coordinate data.

7.4.2 Long name attribute

The long_name attribute is defined to contain a long descriptive name which may, for example, be used for labeling plots. For backwards compatibility with COARDS this attribute is optional. If a variable has no long_name attribute then an application may use, as a default the standard name or the variable name itself [8].

Requirement 6 /req/CF-netCDF/StandardName#1: Any CF-netCDF Variable shall define either a standard_name attribute or a long_name attribute.

Exception, this is not mandatory only for Bounday Variable

Requirement 7 /req/CF-netCDF/StandardNames#2: A standard name shall contain no whitespace and shall be case sensitive.

In addition, the set of permissible standard names is contained in the CF standard name table published at: http://cf-pcmdi.llnl.gov/documents/cf-standard-names/standard-name-table.xml

7.5 CF-netCDF Dimensions and Dimensional Variables

A variable may have any number of Dimensions, including zero, and the dimensions must all have different names. The dimensions of the variable define the axes of the quantity it contains.

If any or all of the dimensions of a variable have the interpretations of "date or time" (T), "height or depth" (Z), "latitude" (Y), or "longitude" (X) then those dimensions must appear in the relative order T, then T, then T, then T. All other dimensions can be placed to the left of the spatiotemporal dimensions.

Requirement 8 /req/CF-netCDF/Dimensions: For any CF-netCDF Variable, its Dimension names **shall** have different names.

Requirement 9 /req/CF-netCDF/DimensionsShape: For a given spatial-temporal CF-netCDF Variable, its spatial-temporal Dimensions order **shall** appear in the relative order T, then Z, then Y, then X.

In addition, any other dimension **shall** be placed to the left of the spatiotemporal dimensions.

7.5.1 Units attribute

CF units conventions describe what are the *units of measure* for the numbers in a netCDF dataset.

The units attribute is required for all variables that represent dimensional quantities.

The value of the units attribute must be a string that can be recognized by Unidata's *Udunits* software package [9].

Requirement 10 /req/CF-netCDF/Units: Any dimensional CF-netCDF Variable (i.e. CF-netCDF Variable that represents dimensional quantity) shall define a units attribute.

Exception, this is not mandatory only for Bounday Variable

In addition, the units value may be physically equivalent (not necessarily identical) to the canonical units for the Variable.

Requirement 11 /req/CF-netCDF/UnitsValue: any units attribute value shall be a string that can be recognized by UNIDATA's Udunits package [9].

In addition, exceptions are the units *level*, *layer*, and *sigma level*.

Requirement 12 /req/CF-netCDF/Units#3: The units of a CF-Variable shall be consistent with the *units* given in the *standard name table* (published at:).

http://cf-pcmdi.llnl.gov/documents/cf-standard-names/standard-name-table/18/cf-standard-name-table.xml

In addition, the units must also be consistent with a specified cell_methods attribute, if one is present.

7.6 CF-NetCDF Coordinate Variables and Coordinate Types

A variable's spatiotemporal dimensions are used to locate data values in time and space. This is accomplished by associating these dimensions with the relevant set of latitude, longitude, vertical, and time coordinates [8].

Variables with a single dimension whose names match the name of their dimension are called "coordinate variables". By convention coordinate variables define the physical coordinate for that dimension (see the netCDF Users Guide [7]).

For instance, the following dataset description shows a variable (i.e. xwind) that is defined on a set of spatiotemporal dimensions: latitude, longitude, vertical, and time dimension; each axis is identified by a coordinate variable. xwind (n, k, j, i) is associated with the coordinate values lon(i), lat(j), pres(k), and time(n).

```
dimensions:
  lat = 18 ;
 lon = 36 ;
 pres = 15;
 time = 4;
variables:
 float xwind(time, pres, lat, lon);
     xwind:long_name = "zonal wind" ;
     xwind:units = "m/s";
 float lon(lon) ;
     lon:long name = "longitude" ;
     lon:units = "degrees east" ;
  float lat(lat) ;
     lat:long name = "latitude" ;
     lat:units = "degrees north";
  float pres(pres);
     pres:long_name = "pressure" ;
     pres:units = "hPa" ;
  double time(time) ;
     time:long name = "time" ;
     time:units = "days since 1990-1-1 0:0:0";
```

There are two methods used to identify variables that contain coordinate data. The first is to use the Coordinate Variable types, the second is the use of Auxiliary Coordinate Variables.

The use of Coordinate Variables is required for all dimensions that correspond to one dimensional space or time coordinates. All of a variable's dimensions that are latitude, longitude, vertical, or time dimensions must have corresponding coordinate variables, i.e., one-dimensional variables with the same name as the dimension.

Coordinate Variable is defined as a numeric data type with values that are ordered monotonically. Missing values are not allowed in coordinate variables.

Requirement 13 /req/CF-netCDF/CoordinateData: Any Variable containing coordinate data shall be: a Coordinate Variable | an Auxiliary Coordinate Variable

Requirement 14 /req/CF-netCDF/CoordinateData/CoordinateVariable: A

Coordinate Variable shall be defined for each Dimension that correspond to
one dimensional space or time coordinates.

Requirement 15 /req/CF-netCDF/CoordinateVariable#1: any Coordinate Variable shall have a single Dimension whose name matches the the Variable name.

Requirement 16 /req/CF-netCDF/CoordinateVariable#2: Coordinate Variable values shall be ordered monotonically.

Requirement 17 /req/CF-netCDF/CoordinateVariable/AxisAttribute#1: for any Coordinate Variable the attribute axis shall be given one of the values X, Y, Z or T.

In addition these values stand for a longitude, latitude, vertical, or time axis respectively for the CF-netCDF cordinate types: LongitudeCoordinate, LatitudeCoordinate, VerticalCoordinate, TimeCoordinate.

Requirement 18 /req/CF-netCDF/ CoordinateVariable/AxisAttribute#2: The values X and Y for the axis attribute shall be used to identify horizontal coordinate variables.

Requirement 19 /req/CF-netCDF/CoordinateVariable/Missing_valuesAttribute: Coordinate Variable shall not define an attribute missing values.

The CF convention gives special constraints to latitude, longitude, vertical, and time coordinates (i.e. LatitudeCoordinate, LongitudeCoordinate, VerticalCoordinate, TimeCoordinate).

7.6.1 Latitude Coordinate

The recommended unit of latitude is degrees_north. Also acceptable are degree north, degree N, degrees N, degreeN, and degreesN.

Requirement 20 /req/CF-netCDF/LatitudeCoordinate: For any Latitude Coordinate the units attribute values shall be: degrees_north | degree north | degrees N, | degrees N | degreeN | degreesN.

In addition, Coordinates of latitude with respect to a rotated pole should be given units of degrees, not degrees_north or equivalents,

Example of Latitude axis

```
float lat(lat);
  lat:long_name = "latitude";
  lat:units = "degrees_north";
  lat:standard_name = "latitude";
```

7.6.2 **Longitude Coordinate**

The recommended unit of longitude is degrees_east. Also acceptable are degree_east, degree_E, degrees_E, degreesE, and degreesE.

Requirement 21 /req/CF-netCDF/LongitudeCoordinate: For any Longitude Coordinate the units attribute values shall be: degrees_east | degree_E, | degrees_E | degreeE | degreesE.

In addition, Coordinates of longitude with respect to a rotated pole should be given units of degrees, not degrees_east or equivalents,

Example of Latitude axis

```
float lon(lon);
lon:long_name = "longitude";
```

```
lon:units = "degrees_east" ;
lon:standard_name = "longitude" ;
```

7.6.3 Vertical (Height, Depth, Dimensional) Coordinate

The direction of positive (i.e., the direction in which the coordinate values are increasing), whether up or down, cannot in all cases be inferred from the units. For this reason the attribute positive is required. The positive attribute may have the value up or down (case insensitive). This attribute may be applied to either coordinate variables or auxillary coordinate variables that contain vertical coordinate data.

Requirement 22 /req/CF-netCDF/VerticalCoordinatePositiveAttribute: Any Vertical Coordinate shall define the positive attribute whose values shall be: up | down.

The acceptable units for vertical (depth or height) coordinate variables are: units of pressure as listed in the file udunits.dat. For vertical axes the most commonly used of these include include bar, millibar, decibar, atmosphere (atm), pascal (Pa), and hPa.

- units of length as listed in the file udunits.dat. For vertical axes the most commonly used of these include meter (metre, m), and kilometer (km).
- other units listed in the file udunits.dat that may under certain circumstances reference vertical position such as units of density or temperature.

Requirement 23 /req/CF-netCDF/VerticalCoordinateUnitsAttribute: For any
Vertical Coordinate the units attribute values shall be: units of pressure as
listed in the file udunits.dat (e.g. bar, millibar, decibar, atmosphere
(atm), pascal (Pa), and hPa) | units of length as listed in the file
udunits.dat (e.g. meter, metre, m, kilometer, km) | other units
listed in the file udunits.dat that may under certain circumstances reference vertical
position such as units of density or temperature.

7.6.4 **Dimensionless Vertical coordinates**

Dimensionless vertical coordinates are defined in the Appendix D of [8]. The standard_name attribute associates a coordinate with its definition which provides a mapping between the dimensionless coordinate values and dimensional values that can positively and uniquely indicate the location of the data.

The formula_terms attribute is used to associate terms in the definitions with variables in a netCDF file; for this reason it is mandatory.

Requirement 24 /req/CF-netCDF/DimensionlessVerticalCoordinate: Any

Dimensioless Vertical Coordinate shall be defined in Appendix D of [8].

Requirement 25 /req/CF-

netCDF/DimensionlessVerticalCoordinateFormula_TermsAttribute: Any Dimensioless Vertical Coordinate **shall** define the formula_terms attribute.

Example of Atmosphere sigma coordinate

```
float lev(lev);
  lev:long_name = "sigma at layer midpoints";
  lev:positive = "down";
  lev:standard_name = "atmosphere_sigma_coordinate";
  lev:formula_terms = "sigma: lev ps: PS ptop: PTOP";
```

The formula_terms attribute associates the variable lev with the term sigma, the variable PS with the term ps, and the variable PTOP with the term ptop. Thus the pressure at gridpoint (n,k,j,i) would be calculated by:

```
p(n,k,j,i) = PTOP + lev(k)*(PS(n,j,i)-PTOP)
```

7.6.5 Time Coordinate

The units attribute takes a string value formatted as per the recommendations in the Udunits package [9].

Requirement 26 /req/CF-netCDF/TimeCoordinateUnitsAttribute: For any Time Coordinate the units attribute values shall be units of time as listed in the file udunits.dat (e.g. day or (d), hour or (hr, h), minute or (min), and second or (sec, s)).

Example of Time axis:

```
double time(time);
  time:long_name = "time";
  time:units = "days since 1990-1-1 0:0:0";
```

7.6.5.1 Calendar attribute

To calculate a new date and time given a base date, base time and a time increment one must know what calendar to use. For this purpose it is important the calendar be specified by the attribute calendar which is assigned to the time coordinate variable. The calendar attribute may be set to none in climate experiments that simulate a fixed time of year or when a non-standard calendar is being used -e.g. non-standard paleoclimate eras .

```
Requirement 27 /req/CF-netCDF/TimeCoordinateCalendarAttribute: Any Time
Coordinate shall define the calendar attribute

In addition, the values currently defined for calendar are: gregorian or
standard | proleptic_gregorian | noleap or 365_day | all_leap or
366 day | 360 day | julian | none.
```

Example of Perpetual time axis

```
variables:
   double time(time);
     time:long_name = "time";
     time:units = "days since 1-7-15 0:0:0";
     time:calendar = "none";
data:
   time = 0., 1., 2., ...;
```

If none of the standard calendars (e.g., calendars appropriate to a different paleoclimate era), a nonstandard calendar must be defined. The lengths of each month are explicitly defined with the month_lengths attribute of the time axis. If leap years are included, then two other attributes of the time axis should also be defined: leap_year and leap_month.

Requirement 28 /req/CF-netCDF/TimeCoordinateNonstandardCalendar: Any Time Coordinate characterized by a nonstandard calendar shall define the month lengths attribute to specify its calendar.

In addition, the attribute value **shall** be for non-leap year: a vector of size 12, specifying the number of days in the months from January to December.

In addition, for leap year two other attributes of the time axis **shall** be defined: leap year and leap month.

7.6.6 **Auxiliary Coordinate Variable**

In cases where coordinate variables are not applicable (e.g. a CF-Variable characterized by spatiotemporal dimensions that are not latitude, longitude, vertical, or time dimensions), Auxiliary Coordinate Variables are defined. The

Auxiliary Coordinate Variables are identified (and linked to the CF-Variable) through the coordinates attribute defined by the CF-Variable.

Unlike Coordinate Variables, there is no relationship between the name of an auxiliary coordinate variable and the name(s) of its dimension(s).

Requirement 29 /req/CF-netCDF/AuxiliaryCoordinateVariable: An Auxiliary Coordinate Variable shall be identified by the coordinates attribute defined by a netCDF Variable.

In addition, The value of the coordinates attribute is a blank separated list of the names of Auxiliary Coordinate Variables

7.6.7 **Scalar Coordinate Variables**

When a variable has an associated coordinate which is single-valued, that coordinate may be represented as a scalar variable. Since there is no associated dimension these scalar coordinate variables should be attached to a data variable via the coordinates attribute.

Once a name is used for a scalar coordinate variable it cannot be used for a 1D coordinate variable. For this reason it is not allowed using a name for a scalar coordinate variable that matches the name of any dimension in the netCDF dataset.

Example of Scalar Coordinate Variables (i.e. atime and P500 variables) [8]:

```
dimensions:
   lat = 180 ;
   lon = 360 ;
   time = UNLIMITED ;
variables:
   double atime
      atime:standard name = "forecast reference time";
      atime:units = "hours since 1999-01-01 \ 00:\overline{00}";
   double time(time);
      time:standard name = "time";
      time:units = "hours since 1999-01-01 00:00";
   double lon(lon);
      lon:long name = "station longitude";
      lon:units = "degrees east";
   double lat(lat) ;
      lat:long name = "station latitude" ;
      lat:units = "degrees north";
   double p500
      p500:long name = "pressure";
      p500:units = "hPa";
      p500:positive = "down";
   float height(time, lat, lon);
      height:long name = "geopotential height" ;
```

```
height:standard_name = "geopotential_height";
height:units = "m";
height:coordinates = "atime p500";
data:
   time = 6., 12., 18., 24.;
   atime = 0.;
   p500 = 500.
```

Requirement 30 /req/CF-netCDF/ScalarCoordinateVariable: A Scalar Coordinate Variable shall define a coordinate which is single-valued.

In addition, the Scalar Coordinate Variable name shall not match the name of any dimension in the netCDF dataset.

7.7 Coordinate Systems

7.7.1 Independent Latitude, Longitude, Vertical, and Time Axes

When each of a variable's spatiotemporal dimensions is a latitude, longitude, vertical, or time dimension, then each axis is identified by a coordinate variable.

7.7.2 Horizontal Coordinate Reference Systems, Grid Mappings, and Projections

When the coordinate variables for an horizontal grid are not longitude and latitude, it is required that the true latitude and longitude coordinates be supplied via the coordinates attribute [8].

If in addition it is desired to describe the mapping between the given coordinate variables and the true latitude and longitude coordinates, the attribute grid_mapping may be used to supply this description.

This attribute is attached to data variables so that variables with different mappings may be present in a single file. The attribute takes a string value which is the name of another variable in the file that provides the description of the mapping via a collection of attached attributes. This variable is called *a grid mapping variable* and is of arbitrary type since it contains no data. Its purpose is to act as a container for the attributes that define the mapping.

The one attribute that all grid mapping variables must have is <code>grid_mapping_name</code> which takes a string value that contains the mapping's name. The other attributes that define a specific mapping depend on the value of <code>grid_mapping_name</code>. The valid values of <code>grid_mapping_name</code> along with the attributes that provide specific map parameter values are described in the Appendix F of [8].

When the coordinate variables for an horizontal grid are longitude and latitude, a grid mapping variable with grid_mapping_name equal to latitude_longitude may be used to specify the ellipsoid and prime meridian.

Requirement 31 /req/CF-netCDF/HorizontalCRS: For any CF Variable defined on an horizontal grid not defined on latitude and longitude dimensions, true latitude and

longitude coordinates **shall** be supplied as Coordinate Variables and associated via the coordinates attribute.

In addition: the attribute grid_mapping may be used to supply the description of the mapping between the given grid coordinate variables and the true latitude and longitude coordinates.

In addition: the grid_mapping attribute takes a string value which is the name of a Grid Mapping Variable

Requirement 32 /req/CF-netCDF/GridMappingVariable: Any Grid Mapping Variable shall define the grid mapping name attribute..

Example of Horizontal grid data characterized by a grid mapping for rotated pole grid (i.e. T(let, rlat, rlon))

```
dimensions:
  rlon = 128 ;
   rlat = 64;
   lev = 18 ;
variables:
   float T(lev,rlat,rlon) ;
      T:long name = "temperature" ;
      T:units = "K";
      T:coordinates = "lon lat";
      T:grid mapping = "rotated pole";
   char rotated pole
      rotated pole: grid mapping name = "rotated latitude longitude" ;
      rotated pole:grid north pole latitude = 32.5 ;
      rotated pole:grid north pole longitude = 170. ;
   float rlon(rlon);
      rlon:long name = "longitude in rotated pole grid" ;
      rlon:units = "degrees";
      rlon:standard name = "grid longitude";
   float rlat(rlat) ;
      rlat:long name = "latitude in rotated pole grid" ;
      rlat:units = "degrees";
      rlon:standard name = "grid latitude";
   float lev(lev) ;
      lev:long name = "pressure level" ;
      lev:units = "hPa" ;
   float lon(rlat, rlon);
      lon:long name = "longitude" ;
      lon:units = "degrees east";
   float lat(rlat, rlon) ;
      lat:long name = "latitude" ;
      lat:units = "degrees north";
```

7.8 Grid Cells

When gridded data does not represent the point values of a field but instead represents some characteristic of the field within cells of finite "volume," a complete description of the variable should include metadata that describes the domain or extent of each cell, and the characteristic of the field that the cell values represent [8].

7.8.1 Cell Boundary Variable

The attribute bounds is used to represent cells to the appropriate coordinate variable(s). The value of bounds is the name of the variable that contains the vertices of the cell boundaries.

This type of variable is referred as "boundary variable." A boundary variable will have one more dimension than its associated Coordinate or Auxiliary Coordinate Variable. The additional dimension must the most rapidly varying one, and its size is the maximum number of cell vertices.

Since a boundary variable is considered to be part of a coordinate variable's metadata, it is not necessary to provide it with attributes such as long name and units.

This approach supports both regular and non-regular grids (i.e. non-contiguous intervals defined on a given axis).

Requirement 33 /req/CF-netCDF/BoundaryVariable: Any Boundary Variable shall define one more dimension than its associated Coordinate or Auxiliary Coordinate Variable.

In addition, The additional dimension **shall** the most rapidly varying one, and its size is the maximum number of cell vertices

Example of cell boundaries on a latitude and longitude axes.

```
dimensions:
    lat = 45;
    lon = 57;
    nv = 2; // number of vertices

variables:
    double lat(lat);
    lat:long_name = "latitude";
    lat:units = "degrees_north";
    lat:bounds = "lat_bnds";
    double lon(lon);
    lon:long_name = "longitude";
    lon:units = "degrees_east";
    lon:bounds = "lon_bnds";
    double lat_bnds(lat, nv);
    double lon_bnds(lon, nv);
```

7.8.2 Cell Measure Variable

For some calculations, information is needed about the size, shape or location of the cells that cannot be deduced from the coordinates and bounds without special knowledge that a generic application cannot be expected to have [8].

To indicate such extra information, a cell_measures attribute may be defined for a variable. This is a string attribute comprising a list of blank-separated pairs of words of the form "measure: name". For the moment, "area" and "volume" are the only defined measures, but others may be supported in future. The "name" is the name of the variable containing the measure values, which we refer to as a "measure variable".

The dimensions of the measure variable must be the same as or a subset of the dimensions of the variable to which they are related. In the case of area, for example, the field itself might be a function of longitude, latitude, and time, but the variable containing the area values would only include longitude and latitude dimensions.

The measure variable must have a units attribute and may have other attributes such as a standard_name.

Requirement 34 /req/CF-netCDF/CellMeasures: cell_measures attribute shall be a string attribute comprising a list of blank-separated pairs of words of the form "measure: name".

Requirement 35 /req/CF-netCDF/MeasureVariable: Mesure Variable dimensions shall be the same as or a subset of the dimensions of the CF Variable to which they are related.

Example of cell areas for a spherical geodesic grid.

```
dimensions:
   cell = 2562; // number of grid cells
   time = 12;
   nv = 6 ; // maximum number of cell vertices
variables:
   float PS(time,cell) ;
      PS:units = "Pa" ;
      PS:coordinates = "lon lat";
      PS:cell measures = "area: cell area";
   float lon(cell);
      lon:long name = "longitude" ;
      lon:units = "degrees east" ;
      lon:bounds="lon vertices";
   float lat(cell) ;
      lat:long name = "latitude" ;
      lat:units = "degrees north";
```

```
lat:bounds="lat_vertices";
float time(time);
   time:long_name = "time";
   time:units = "days since 1979-01-01 0:0:0";
float cell_area(cell);
   cell_area:long_name = "area of grid cell";
   cell_area:standard_name="area";
   cell_area:units = "m2"
float lon_vertices(cell,nv);
float lat_vertices(cell,nv);
```

7.8.3 **Cell Methods**

To describe the characteristic of a field that is represented by cell values, the cell_methods attribute of the variable is defined. This is a string attribute comprising a list of blank-separated words of the form "name: method". Each "name: method" pair indicates that for an axis identified by name, the cell values representing the field have been determined or derived by the specified method [8].

For example, if data values have been generated by computing time means, then this could be indicated with cell_methods="t: mean", assuming here that the name of the time dimension variable is "t".

In the specification of the cell_methods attribute, *name* can be a dimension of the variable, a scalar coordinate variable, a valid standard name, or the word "area". (See Section 7.3.4, "Cell methods when there are no coordinates" of [8] concerning the use of standard names in cell methods).

The values of *method* should be: point, sum, mean, maximum, minimum, mid_range, standard_deviation, variance, mode, and median.

Requirement 36 /req/CF-netCDF/CellMethods: cell_methods attribute shall be a string attribute comprising a list of blank-separated words of the form "name: method".

In addition, name can be: a Dimension of the variable (defining the attribute), a Scalar Coordinate Variable, a valid standard name, or the word "area".

In addition, the value of method should be: point | sum | mean | maximum |
minimum | mid_range | standard_deviation | variance, mode |
median.

Example: 12-hourly timeseries of pressure, temperature and precipitation from a number of stations, where pressure is measured instantaneously, maximum temperature for the preceding 12 hours is recorded, and precipitation is accumulated in a rain gauge [8].

```
time = UNLIMITED; // (5 currently)
   station = 10;
   nv = 2;
variables:
   float pressure(station, time) (time, station);
      pressure:long name = "pressure";
      pressure:units = "kPa";
      pressure:cell methods = "time: point";
   float maxtemp(station, time) (time, station);
      maxtemp:long name = "temperature";
      maxtemp:units = "K";
      maxtemp:cell methods = "time: maximum";
   float ppn(station,time)(time,station);
      ppn:long name = "depth of water-equivalent precipitation";
      ppn:units = "mm";
      ppn:cell methods = "time: sum";
   double time(time);
      time:long name = "time";
      time:units = "h since 1998-4-19 6:0:0";
      time:bounds = "time bnds";
   double time bnds(time, nv);
data:
   time = 0., 12., 24., 36., 48.;
   time bnds = -12.,0.,0.,12.,12.,24.,24.,36.,36.,48.;
```

7.9 Discrete Sampling Geometries

Datasets representing Discrete Sampling Geometries -such as time series, vertical profiles and trajectories- are characterized by a dimensionality that is lower than that of the space-time region that is sampled; discrete sampling geometries are typically "paths" through space-time.

CF ver. 1.6 specification [16] represents Discrete Sampling Geometries datasets as Feature Collections which are a collection of Feature (i.e. instances) made up of data Elements. Figure 5 and Figure 6 shows the conventions model.

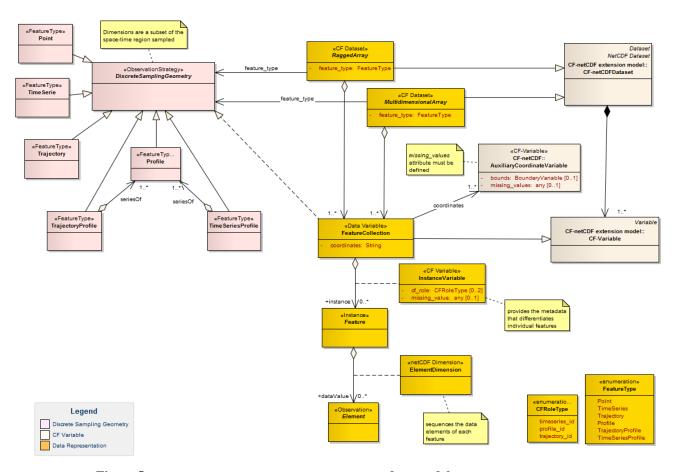


Figure 5 - Discrete Sampling Geometries data model: context

31

Figure 6 - Discrete Sampling Geometries data model: data representations

Requirement 37 /req/CF-netCDF/DistrictSamplingGeometriesModel: Any data instantiating a concrete CF-netCDF DistrictSamplingGeometry dataset shall conform with the UML diagrams in Figure 5 and Figure 6Figure 4Figure 1.

7.9.1 Features and Feature Types

The features contained within a collection must always be of the same type; and all the collections contained in a CF file must be of the same feature type.

Requirement 38 /req/CF-netCDF/FeatureCollection: CF-netCDF Feature Collection shall contain Feature instances of the same type.

Requirement 39 /req/CF-netCDF/Feature: CF-netCDF Dataset shall contain Feature Collection variables of the same feature type.

For the scope of this specification, Feature Types are listed in **Table 1** along with their mandatory dimensions [16].

Table 1 - Mandatory dimensions for Feature Type

	Description of a single feature with this discrete sampling geometry			
featureType	Form of a data variable containing values defined on a collection of these features	Mandatory space-time coordinates for a collection of these features		
point	a single data point (having no implied coo	rdinate relationship to other points)		
	data(i)	x(i) y(i) t(i)		
timeSeries	a series of data points at the same spatial le	ocation with monotonically increasing times		
	data(i,o)	x(i) y(i) t(i,o)		
trajectory	a series of data points along a path through space with monotonically increasing times			
	data(i,o)	x(i,o) y(i,o) t(i,o)		
profile	an ordered set of data points along a vertical line at a fixed horizontal position and fixed time			
	data(i,o)	x(i) y(i) z(i,o) t(i)		
timeSeriesProfile	a series of profile features at the same horizontal position with monotonically increasing times			
	data(i,p,o)	x(i) y(i) z(i,p,o) t(i,p)		
trajectoryProfile	a series of profile features located at points ordered along a trajectory			
	data(i,p,o)	x(i,p) y(i,p) z(i,p,o) t(i,p)		

i=instance dimension; o, p=element dimensions; x and y=horizontal dimensions; z=vertical dimension; t=temporal dimension.

Requirement 40 /req/CF-netCDF/FeatureTypeDimension: Any CF-netCDF Feature Collection variable implementing a Feature type shall define the Dimensions specified in Table 1.

7.9.2 Collections, instances and elements

Referring to Table 1, the Instance Dimension (dimension with subscript i) identifies a particular feature within a collection of features. Instance Variable is a one-dimensional variable (defined in a Discrete Geometry CF Dataset), which has

only this dimension (such as x(i) y(i) and z(i) for a TimeSeries. Instance Variables provide the metadata that differentiates individual features [16].

Feature data values are defined as Elements. The Element Dimensions (dimensions with subscripts o and p) distinguish the data elements that compose a single Feature. For example in a collection of TimeSeries features, each time series instance, i, has data values at various times, o. In a collection of Profile features, the subscript, o, provides the index position along the vertical axis of each profile instance [16]

7.9.3 Representations of collections of features in data variables

The individual Features within a Collection need not necessarily contain the same number of Elements. For example, observed *in situ* time series will commonly contain unique numbers of time points, reflecting different deployment dates of the instruments. Other data sources, such as the output of numerical models, may commonly generate features of identical size.

Four types of representation are possible [16], see Figure 5:

- two Multidimensional Array representations, in which each Feature instance is allocated the identical amount of storage space. In these representations the Instance Dimension and the Element Dimension(s) are distinct CF Coordinate Axes;
- two Ragged Array representations, in which each Feature is provided with the minimum amount of space that it requires. In these representations the instances of the individual Features are stacked sequentially along the same array dimension as the Elements of the Features; this combined dimension is defined as Sample Dimension.

Requirement 41 /req/CF-netCDF/MultidimensionalArray: Any Multidimensional Array Feature Collection shall have both an Instance Dimension and an Element Dimension.

Requirement 42 /req/CF-netCDF/RaggedArray: Any Ragged Array Feature Collection shall have a Sample Dimension.

In addition, the Sample Dimension is occupied by both an Instance Dimension and an Element Dimension.

7.9.4 Orthogonal multidimensional array representation

The Orthogonal Multidimensional Array representation is the simplest representation; it can be used if each Feature instance in the Collection has identical Coordinates along the Element Dimension of the Features.

Requirement 43 /req/CF-netCDF/OrthogonalMultidimensionalArray: Any
Feature instance of an Orthogonal Multidimensional Array Feature
Collection shall have identical Coordinates along the Element Dimension.

7.9.5 Incomplete multidimensional array representation

The Incomplete Multidimensional Array representation can used if the features within a collection do not all have the same number of Elements, but sufficient storage space is available to allocate the number of Elements required by the longest Feature to all Features. That is, Features that are shorter than the longest Feature must be padded with missing values to bring all instances to the same storage size [16].

7.9.6 Contiguous ragged array representation

The Contiguous Ragged Array representation can be used only if the size of each Feature is known at the time that it is created [16].

In this representation, the Dataset contains a Count Variable, which must be of type integer and must have the Instance Dimension as its sole dimension. The Count Variable contains the number of Elements that each Feature has.

This representation and its Count Variable are identifiable by the presence of an attribute, sample_dimension, found on the Count Variable, which names the Sample Dimension being counted.

Requirement 44 /req/CF-netCDF/ ContiguousRaggedArray: Any Contiguous Ragged Array dataset shall have a Count Variable.

Requirement 45 /req/CF-netCDF/ ContiguousRaggedArraySampleDimension: Any Count Variable shall define the attribute sample dimension.

In addition, the attribute sample_dimension names the Sample Dimension being counted.

7.9.7 **Indexed ragged array representation**

The Indexed Ragged Array representation stores the features interleaved along the Sample Dimension in the Feature Collection data variable. The canonical use case for this representation is the storage of real-time data streams that contain reports from many sources.

In this representation, the Dataset contains an Index Variable, which must be of type integer, and must have the Sample Dimension as its single dimension.

The Index Variable contains the zero-based index of the Feature to which each Element belongs.

This representation and its Index Variable are identifiable by the presence of an attribute, instance_dimension which names the dimension of the Instance Variables (i.e. the Instance Dimensions).

Requirement 46 /req/CF-netCDF/IndexedRaggedArray: Any Indexed Ragged Array dataset shall have an Index Variable.

In addition, the Index Variable must be of type integer.

In addition, the Index Variable **must** the Sample Dimension as its single dimension.

Requirement 47 /req/CF-netCDF/IndexedRaggedArrayInstanceDimension: Any Index Variable shall define the attribute instance_dimension.

In addition, the attribute instance_dimension names the Instance Dimension characterizing the Instance Variables of the dataset

7.9.8 **FeatureType attribute**

The global attribute, feature_type, is required for all Discrete Sampling Geometry representations.

Requirement 48 /req/CF-netCDF/Feature_type: Any Ragged Array and Multidimensional Array dataset shall define an attribute feature_type.

In addition, the attribute feature_type **must** be: "point" | "timeSeries" | trajectory | profile | timeSeriesProfile | trajectoryProfile.

7.9.9 **Coordinates and metadata**

Every Element of every Feature must be unambiguously associated with its space and time coordinates and with the feature that contains it. The coordinates attribute must be attached to every Feature Collection data variable to indicate the spatiotemporal coordinate variables that are needed to geo-locate the data.

Requirement 49 /req/CF-netCDF/FeatureCollectionCoordinates: Any Feature Collection data variable shall define an attribute coordinates.

The cf_role attribute of Instance Variable identifies the roles of variables that identify features in discrete sampling geometries.

Requirement 50 /req/CF-netCDF/Cf_role: The attribute cf_role must be: "timeseries_id" | "profile id" | "trajectory_id".

7.9.10 Missing Data

Auxiliary Coordinate Variables (spatial and time), characterizing Feature Collection, must contain missing values to indicate a void in data storage in the file but must not have missing data for any other reason.

Requirement 51 /req/CF-netCDF/MissingData: Auxiliary Coordinate Variables characterizing Feature Collection shall define the attribute missing values.

7.9.11 **Examples**

Annotated examples of Discrete Sampling Geometries are in Appendix A9 of [16].

8 CF-netCDF Mapping to ISO Coverage Model

8.1 ISO Coverages and Grid Coverages

According to ISO 19123 [4], a coverage is a *feature* (e.g. a Feature Collection instance) that acts as a *function* to return values from its *range* for any direct position within its *spatial*, *temporal or spatiotemporal domain*.

The spatiotemporal domain of a discrete coverage may be a regular or semi-regular tessellation of the extent of the coverage. Point sets (multi-points coverages) and other sets of non-conterminous geometric objects do not form tessellations.

Grid coverages employ a systematic tessellation of the domain. The principal advantage of such tessellations is that they support a sequential enumeration of the elements of the domain, which makes data storage and access more efficient. The tessellation may represent how the data were acquired or how they were computed in a model. The domain of a grid coverage is a set of grid points [4].

8.2 Dimensionality Challenges

To explicitly map the CF-netCDF array data model (e.g. meteo-ocean multi-dimensional observation and physical model outputs) to the ISO Coverage data model, there is a need to address structural and semantics differences, applying the appropriate constraints and, hence, performing a mediation process.

Points to consider include:

- CF-netCDF data model supports datasets characterized by multiple domains (e.g. more than one coordinate system is defined for a dataset), whereas an ISO coverage is characterized by a single coordinate system.
- CF-netCDF data model supports datasets characterized by arbitrary multidimensional domains (e.g. collections of spatiotemporal coverages), whereas an ISO coverage domain is either 2-D (space), 3-D (2D + vertical dimension or 2D + time), 4-D (2D + vertical dimension + time).
- Most commonly, the domain axes of a CF-netCDF dataset coincide with reference system axes. However, CF-netCDF allows arbitrary domain shapes, i.e. domain axes ordering. Thus, it is possible to have a variable v1 defined on a <x, y, t, z> domain and a variable v2 defined on a <z, x, t, y> domain. Since there is a fixed enumeration of allowed compound CRSs in ISO coverages, the transformation of such generalized domain coordinates to ISO CRS coordinates may not be an affine transformation. In other words, mapping CF-netCDF domains to ISO (geo)rectified domains may require axes reshaping and reordering.

In this document, a two steps approach is adopted to address these mapping issues: a first step consists in defining appropriate profiles for both data models. The second step deals

with defining a set of mapping constraint rules, here expressed as conformance requirements.

8.3 CF-netCDF model mapping to ISO Coverage types

Clearly, CF-netCDF datasets encode discrete observations and measurements –i.e. *discrete coverages*.

CF-netCDF datasets (array oriented datasets) are mainly gridded and multi-point data. Thus, this specification will deal with multi-dimensional gridded point and multi-point data –i.e. *gridded point coverages* and *multi-point coverages*.

8.3.1 **CF-netCDF and Continuous coverages**

In most cases, a continuous coverage is also associated with a discrete coverage that provides a set of control values to be used as a basis for evaluating the continuous coverage. Evaluation of the continuous coverage at other direct positions is done by interpolating between the geometry value pairs of the control set. This often depends upon additional geometric objects constructed from those in the control set; these additional objects are typically of higher topological dimension than the control objects.

In ISO 19123, such objects are called "geometry value objects". A geometry value object is a geometric object associated with a set of geometry value pairs that provide the control for constructing the geometric object and for evaluating the coverage at direct positions within the geometric object.

A common example of geometry value object is represented by quadrilateral grid cell whose vertices are represented by four grid points (i.e. the set of geometry value pairs).

In the netCDF domain, the continuous quadrilateral grid coverage type is associated to a discrete grid point coverage type by sharing the same geometry grid and matrix values; the two coverage subclasses share the <code>GridValueMatrix</code> object and the derived <code>GridPointValuePair</code> objects. The real difference consists in the realization of the <code>locate()</code> operation, which is inherited from the Coverage super-type. Therefore, "the principal use of discrete point coverages is to provide a basis for continuous coverage functions, where the evaluation of the continuous coverage function is accomplished by interpolation between the points of the discrete point coverage".

The same approach is applied in the case of a multi-point coverage (Discrete Point Coverage in ISO 19123). The principal use of discrete point coverages is to provide a basis for continuous coverage functions, where the evaluation of the continuous coverage function is accomplished by interpolation between the points of the discrete point coverage. Most interpolation algorithms depend upon a structured pattern of spatial relationships between the points. This requires either that the points in the spatial domain of the discrete point coverage be arranged in a regular way, or that the spatial domain of the continuous coverage be partitioned in a regular way in relation to the points of the discrete point coverage. Grid coverages employ the first method; Thiessen polygon and TIN coverages employ the second [4].

In the case of netCDF data, the interpolation methods specified by the ISO continuous coverage classes do not apply in general. In fact, in most cases, any scientifically realistic interpolation depends on the physics of the situation as well as the geometry. Hence, any realistic interpolation is actually data dependent.

Therefore the netCDF data types don't implement the evaluation operation using interpolation methods.

They are mapped to the ISO discrete coverages because they actually represent sampled points in a continuous space where the intermediate values depend on the solution to physics-based equations that depend on the values of the range data.

8.3.2 **Mapping rules**

The high-level abstract mapping model is depicted in Figure 7.

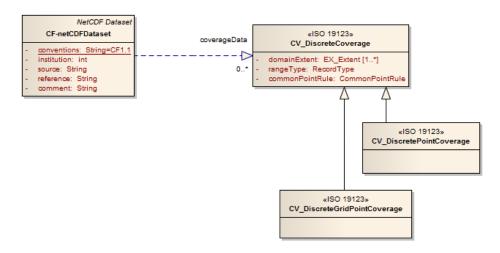


Figure 7. CF-netCDF dataset mapping to ISO coverage types

As far as the CF-netCDF and ISO19123 models are concerned, the following profiling constraints are introduced.

For the present specification, any group of CF-netCDF data variables that share the same set of spatial/temporal coordinate variables (e.g. Feature Collection objects) can be mapped to a single discrete coverage, ISO19123:CV DiscreteCoverage.

For the present specification, the following discrete coverage sub-types are considered: ISO19123:CV_DiscreteGridPointCoverage and ISO19123:CV_DiscretePointCoverage.

Requirement 52 /req/CF-netCDF/discreteGridPointCoverage: Any group of CF-netCDF data variables that share the same set of spatial/temporal coordinate variables shall realize ISO19123:CV_DiscreteCoverage sub-types:

```
ISO19123:CV_DiscreteGridPointCoverage and ISO19123:CV_DiscretePointCoverage.
```

In addition, the ISO19123: CV_CoverageFunction shall not define any interpolation method.

Figure 8 depicts the ISO19123:CV_DiscretePointCoverage data model considered for this specification.

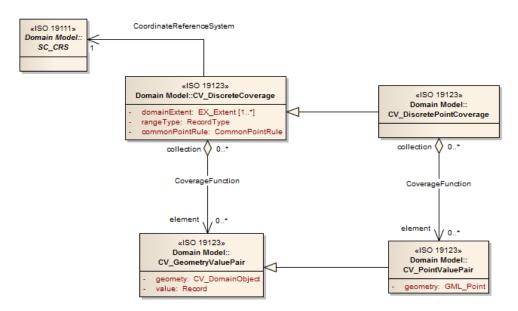


Figure 8. ISO19123:CV_DiscretePointCoverage data model

Figure 9 depicts the ${\tt ISO19123:CV_DiscreteGridPointCoverage}\ data\ model$ considered for this specification.

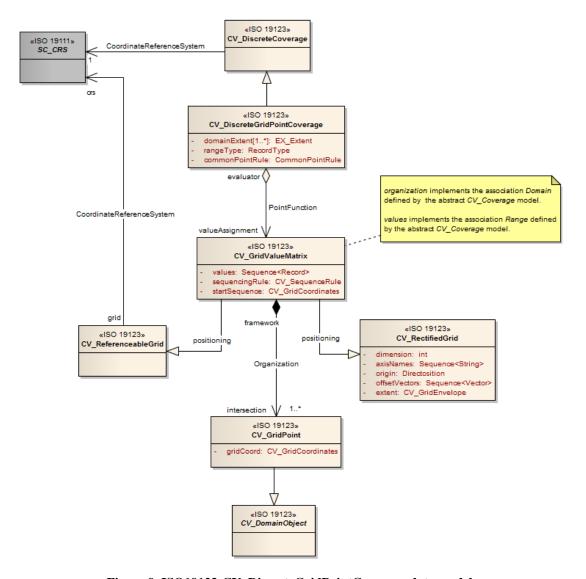


Figure 9. ISO19123:CV_DiscreteGridPointCoverage data model

The abstract mapping between CF-netCDF data and ISO19123:CV DiscreteCoverage is showed in Figure 10.

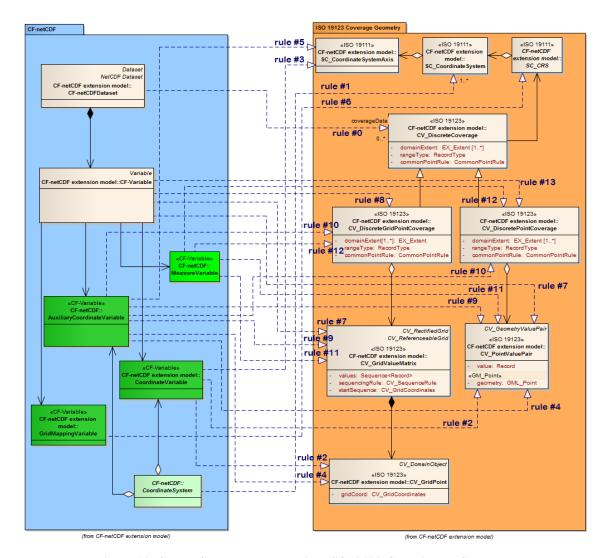


Figure 10. CF-netCDF dataset mapping ISO19123:CV_DiscreteCoverage

8.3.2.1 Coordinate System

A set of spatial/temporal Coordinate Variables realizes the domain of the coverage, whose geometry is represented by either a single grid (ISO19123:CV_Grid) or subtype of it.

Requirement 53 /req/CF-netCDF/CoverageDomain: the set of spatial/temporal Coordinate Variables, shared by CF-netCDF data Variables, shall realize an ISO19123:CV_DiscreteGridPointCoverage.CV_GridValueMatrix.

CV GridPoint.gridCoord or a subtype of it;

NOTE

The domain of each coverage may be described by the extent of the related coordinate axis variables.

CF-netCDF dataset Coordinate System is the composition of the set of coordinate variables / auxiliary coordinate variables commonly shared by CF-netCDF data variables. The coordinate variables / auxiliary coordinate variables realize the coordinate axes.

CF Auxiliary Coordinate Variable are used for encoding non standard spatial/temporal dimension (e.g. non monotonically crescent axes).

```
Requirement 54 /req/CF-netCDF/DatasetCS: the CF-netCDF Coordinate

System type, which is comprised of the set of spatial/temporal coordinate variables
shared by CF-netCDF data variables, shall realize

ISO19123:CV_DiscreteCoverage.SC_CRS.SC_CoordinateSystem or a
subtype of it (i.e.

ISO19123:CV_DiscreteGridPointCoverage.SC_CRS.SC_CoordinateSyst
em or

ISO19123:CV_DiscretePointCoverage.SC_CRS.SC_CoordinateSystem).

Additionally, the spatial/temporal Coordinate Variables and its subtypes (i.e.
Vertical Coordinate, Latitude Coordinate, Longitude
Coordinate, Time Coordinate elements), and the Auxiliary
Coordinate Variables shall realize the related set of
SC CRS.SC CoordinateSystem.SC CoordinateSystemAxis
```

The grid mapping and/or projection information maps to the ISO1911: CRS and the associated ISO1911: CoordinateSystem (e.g. the units of the coordinate system).

```
Requirement 55 /req/CF-netCDF/DatasetCRS: the Grid Mapping Variable projection information characterizing the set of spatial/temporal coordinate variables, shared by CF-netCDF data variables, shall realize ISO19123:CV_DiscreteCoverage.SC_CRS.SC_CoordinateSystem.type or a subtype of it.
```

NOTES

To model "engineering" gridded datasets —i.e. datasets which are referred to a local defined coordinate system—the CRS is an application defined (i.e. engineering) CRS, characterized by an "engineering" datum (see ISO 19111). The associated Coordinate System has the origin and offset attributes coincident with the data grid Cartesian system origin and axes versors (i.e. unit vectors).

A Scalar Coordinate Variable is a coordinate variable that contains coordinate data. Functionally, it is equivalent to either a size one coordinate variable or a size one auxiliary coordinate variable

8.3.2.2 Coverage function

The data variables in a CF-netCDF dataset make up a discrete coverage *range* with each variable being a separate range field.

- **Requirement 56** /req/CF-netCDF/DatasetRange: the CF-netCDF data Variables sharing the common set of spatial/temporal Coordinate Variables, shall realize one of the following objects:
 - (a) ISO19123:CV_DiscreteGridPointCoverage.CV_GridValuesMatrix. values or a subtype of it;
 - (b) ISO19123:CV DiscretePointCoverage.CV PointValuePair.value

Additionally, the CF Variable data values generate the CV_GeometryValuePair record value(s): (a) CV_GridValueMatrix.values.record entry (i.e. AttributeName, Any); (b) CV_PointValuePair.value.record entry (i.e. AttributeName, Any).

NOTE

The attribute values: Sequence < Record > shall be a sequence of N feature attribute value records where N is the number of grid points (or multi-point instances) within the section of the grid (or multi-point domain) specified by extent.

The discrete coverage *range* is a list of records with an attribute for every related CF-netCDF variable sharing a common set of spatial/temporal coordinate variables.

Requirement 57 /req/CF-netCDF/DatasetRangeType: the CF-netCDF data Variables sharing a common set of spatial/temporal coordinate variables/auxiliary coordinate variables, shall realize one of the following objects:

- (a) CV_DiscreteGridPointCoverage.RangeType.AttributesType (i.e. AttributeName, TypeName) or a subtype of it;
- (b) CV_DiscretePointCoverage.RangeType.AttributesType (i.e. AttributeName, TypeName) or a subtype of it.

CF-netCDF dataset may be characterized by arbitrary multi-dimensional domains, whereas an ISO coverage domain is either 2-D (space), 3-D (2D + vertical dimension or 2D + time), 4-D (2D + vertical dimension + time). Thus, the extra dimensions (called parametric dimensions and described by the CF Auxiliary Coordinate Variable entity) must be treated as variables realizing the coverage data *range* (i.e. CF Variable).

Requirement 58 /req/CF-netCDF/DatasetParametricRange: the CF-netCDF

Auxiliary Coordinate Variables (part of the dataset shared coordinate system) which are not space or time dimension, **shall** realize one of the following objects:

- (a) ISO19123:CV_DiscreteGridPointCoverage.CV_GridValuesMatrix. values or a subtype of it;
- (b) ISO19123:CV DiscretePointCoverage.CV PointValuePair.value

objects:

Requirement 59 /req/CF-netCDF/DatasetParametricRangeType: the CF-netCDF Auxiliary Coordinate Variables (part of the dataset shared coordinate system) which are not space or time dimension, shall realize one of the following

- (a) CV_DiscreteGridPointCoverage.RangeType.AttributesType (i.e. AttributeName, TypeName) or a subtype of it;
- (b) CV_DiscretePointCoverage.RangeType.AttributesType (i.e. AttributeName, TypeName).

A CF-netCDF cell Measure Variable may be associated with a variable to indicate extra information about the spatial properties of a variable's grid cells (or point cells).

Measure Variable data values must be treated as a range dimension of coverage data.

Requirement 60 /req/CF-netCDF/MeasureVariableMapping#1: any CF-netCDF Measure Variable (characterising a CF Variable) shall realize one of the following objects:

- (a) ISO19123:CV_DiscreteGridPointCoverage.CV_GridValuesMatrix. values or a subtype of it;
- (b) ISO19123:CV DiscretePointCoverage.CV PointValuePair.value

Requirement 61 /req/CF-netCDF/MeasureVariableMapping#2: any CF-netCDF Measure Variable (characterising a CF Variable) shall realize one of the following objects:

- (a) CV_DiscreteGridPointCoverage.RangeType.AttributesType (i.e. AttributeName, TypeName) or a subtype of it;
- (b) CV_DiscretePointCoverage.RangeType.AttributesType (i.e. AttributeName, TypeName).

NOTE:

A Scalar Coordinate Variable is a coordinate variable that contains coordinate data. Functionally, it is equivalent to either a size one coordinate variable or a size one auxiliary coordinate variable

8.3.2.3 CF Discrete Sampling Geometries

In keeping the previous mapping requirements, Figure 11 depicts the CF Discrete Sampling Geometries mapping to ISO19123:DiscreteCoverage.

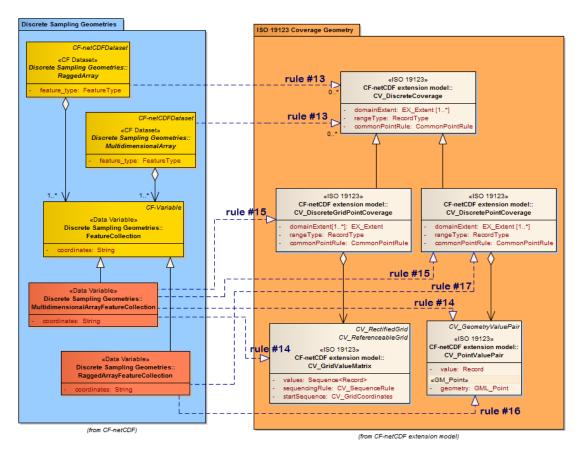


Figure 11 - CF-netCDF Discrete Sampling Geometries mapping ISO19123: DiscreteCoverage

CF RaggedArray and MultidimensionalArray entities are CF dataset subtypes; hence, they generate one or more ISO19123: CV_DiscreteCoverage instances.

```
Requirement 62 /req/CF-netCDF/DiscreteSamplingGeometriesMapping#1: Any CF-netCDF Ragged Array shall realize ISO19123:CV_DiscreteCoverage subtype ISO19123:CV_DiscreteGridPointCoverage

In addition, the ISO19123:CV_CoverageFunction shall not define any interpolation method.
```

```
Requirement 63 /req/CF-netCDF/DiscreteSamplingGeometriesMapping#2: Any CF-netCDF Multidimensional Array shall realize
ISO19123:CV_DiscreteCoverage sub-types:
ISO19123:CV_DiscreteGridPointCoverage or
ISO19123:CV_DiscretePointCoverage.

In addition, the ISO19123:CV_CoverageFunction shall not define any interpolation method.
```

A CF-netCDF Feature Collection is a CF Variable; hence, it generates an ISO19123: CV_CoverageFunction instance. For CF Multidimensional Array Feature Collection, each feature instance is allocated the identical amount of storage space. Both *orthogonal multidimensional array* and *incomplete multidimensional array* representations may encode feature instances in the collection which have identical coordinates along the element axis of the features. Therefore, it is possible to map those arrays on either

ISO19123:CV_DiscreteGridPointCoverage.CV_GridValuesMatrix or ISO19123:CV DiscretePointCoverage.CV PointValuePair.

Ragged Array Feature Collection comprises features which are not characterized by identical coordinates along the element axis of the features. In these representations the instances of the individual features are stacked sequentially along the same array dimension as the elements of the features. Hence, they can be mapped (in an unambiguous way) only to

ISO19123:CV_DiscretePointCoverage.CV_PointValuePair

Requirement 64 /req/CF-

netCDF/MultidimensionalArrayFeatureCollectionMapping#1: Any CF-netCDF Multidimensional Array Feature Collection shall realize one of the following objects:

- (a) ISO19123:CV_DiscreteGridPointCoverage.CV_GridValuesMatrix. values or a subtype of it;
- (b) ISO19123:CV DiscretePointCoverage.CV PointValuePair.value

Requirement 65 /req/CF-netCDF/

 ${\bf Multidimensional Array Feature Collection Mapping \#2} : {\tt Any\ CF-netCDF}$

Multidimensional Array Feature Collection **shall** realize one of the following objects:

- (a) CV_DiscreteGridPointCoverage.RangeType.AttributesType (i.e. AttributeName, TypeName) or a subtype of it;
- (b) CV_DiscretePointCoverage.RangeType.AttributesType (i.e. AttributeName, TypeName) or a subtype of it.

Requirement 66 /req/CF-netCDF/RaggedArrayFeatureCollectionMapping#1: Any CF-netCDF Multidimensional Array Feature Collection shall realize an ISO19123:CV_DiscretePointCoverage.CV_PointValuePair.value or a subtype of it.

Requirement 67 /req/CF-netCDF/RaggedArrayFeatureCollectionMapping#2: Any CF-netCDF Ragged Array Feature Collection shall realize an

ISO10123:CV_DiscretePointCoverage.RangeType.AttributesType (i.e. AttributeName, TypeName) or a subtype of it.

8.3.3 Mapping rules Summary

A summary of the mapping rules are reported in the Table 2, Table 3 and Table 4.

 $Table~2.~Summary~of~relationships~between~CF-netCDF3~and~CV_DiscreteGridPointCoverage~models:~main~packages$

CF-netCDF concept	ISO Discrete Coverage concept	Mapping Cardinality (obligation)	Description and constraints	Rule #
CF Dataset	CV_DiscreteGridPo intCoverage or CV_DiscretePointC overage	1 to 0n	Grouping the CF_Variables defined in a dataset by their CoordinateSystem, a \(\textit{CV_DiscreteCoverage} \) may be defined for each group. The \(\textit{CV_DiscreteCoverage} \) is realized as either a \(\textit{CV_DiscreteGridPointCoverage} \) e or a \(\textit{CV_DiscretePointCoverage} \). The association of groups and coverages may not be one-to-one, since the concept of coordinate system in CF-netCDF is wider than CRS (see table Table 4). Hence, some of the obtained coverages may be further grouped together. It is possible that a CoordinateSystem entity does not contain any axes allowed in coverage CRS (i.e. only parametric dimension axes); the associated variables would then originate no \(\textit{CV_DiscreteCoverage} \) instance.	0
CF Variable and sub-types related to a CoordinateSy stem	CV_CoverageFuncti on	1 to 1	The CF Variable belongs to a group of variables which is mappable to ISO CV_DiscreteCoverage See Table 3	
Coordinate	CS_CRS	1 to 1	The CF-netCDF CoordinateSystem belongs to a group of variables which is	

System			mappable to ISO CV_DiscreteCoverage See Table 4	
Discrete Sampling Geometry	CV_DiscreteGridPo intCoverage or CV_DiscretePointC overage	1 to 0n	A CF Discrete Sampling Geometry is a type of CF Dataset	13
Feature Collection	CV_CoverageFuncti	1 to 1	A CF Feature Collection is a type of CF Variable See Table 5	

8.3.3.1 Coverage Function

 $\textbf{Table 3. Summary of relationship between CF-netCDF and CV_DiscreteCoverage models: Coverage Function package}$

CF-netCDF concept	ISO Discrete Coverage concept	Mapping Cardinality	Description and constraints	Rule #
Dataset CF Variable	ISO19123:CV_DiscreteGri dPointCoverage.CV_GridV aluesMatrix.values or ISO19123:CV_DiscretePoi ntCoverage.CV_PointValu ePair.value	1 to 1	The set of CF Variables comprising the group that shares a common Coordinate System (whose axes are the set of spatial/temporal CF Coordinate Variables/Auxiliary Coordinate Variables/Auxiliary Coordinate Variables). The CF Variable data values generate the range set record values, as either: CV_GridValueMatrix.values .record entry (i.e. AttributeName, Any) or CV_DiscretePointCoverage. CV_PointValuePair.value entry (i.e. AttributeName, Any)	7
Dataset CF Variable	CV_DiscreteGridPointCov erage.RangeType.Attribu tesType entry (i.e. AttributeName, TypeName) Or ISO19123:CV_DiscretePointCoverage. RangeType.AttributesType entry (i.e. AttributeName, TypeName) TypeName)	1 to 1	The range of each CV_DiscreteGridPointCover age is a list of records with an attribute for every related CF-netCDF Variable and for every CF CoordinateVariable/Auxiliary Coordinate Variable (defined by the shared Coordinate System). Thus, the CF Variable properties (i.e. name and type) realize the CV_DiscreteGridPointCover age.RangeType.AttributesT ype entry (i.e. AttributeName, TypeName) or the analogous for multi-point coverages	8
Dataset Auxiliary Coordinate Variable	ISO19123:CV_DiscreteGri dPointCoverage.CV_GridV aluesMatrix.values or ISO19123:CV_DiscretePoi ntCoverage.CV_PointValu ePair.value	1 to 1	A CF-netCDF Auxiliary Coordinate Variable may be used to realize a non spatial/temporal dimension (e.g. pressure, density, salinity). That is not allowed in a coverage CRS (i.e. parametric dimension axes). Thus, the auxiliary coordinate variable does not behave like a discrete coverage domain axis; on the contrary, it behaves like a discrete	9

			coverage range axis	
Dataset Auxiliary Coordinate Variable	CV_DiscreteGridPointCov erage.RangeType.Attribu tesType entry (i.e. AttributeName, TypeName) or ISO19123:CV_DiscretePointCoverage. RangeType.AttributesType entry (i.e. AttributeName, TypeName)	1 to 1	A CF-netCDF Auxiliary Coordinate Variable may be used to realize a non spatial/temporal dimension (e.g. pressure, density, salinity). That is not allowed in a coverage CRS (i.e. parametric dimension axes). Thus, the auxiliary coordinate variable does not behave like a discrete coverage domain axis; on the contrary, it behaves like a discrete coverage range axis.	10
Dataset MeasureVariable	ISO19123:CV_DiscreteGri dPointCoverage.CV_GridV aluesMatrix.values or ISO19123:CV_DiscretePoi ntCoverage.CV_PointValu ePair.value	1 to 1	A CF-netCDF cell Measure Variable is associated with a variable to indicate extra information about the spatial properties of a variable's grid cells (or point cells). A CF-netCDF cell Measure Variable must be treated as a range variable of the coverage.	11
Dataset Measure Variable	CV_DiscreteGridPointCov erage.RangeType.Attribu tesType entry (i.e. AttributeName, TypeName) or ISO19123:CV_DiscretePointCoverage. RangeType.AttributesType entry (i.e. AttributeName, TypeName)	1 to 1	A CF-netCDF cell Measure Variable is associated with a variable to indicate extra information about the spatial properties of a variable's grid cells (or point cells). A CF-netCDF cell Measure Variable must be treated as a range variable of the coverage	12

Note: A Scalar Coordinate Variable is a coordinate variable that contains coordinate data. Functionally, it is equivalent to either a size one coordinate variable or a size one auxiliary coordinate variable

8.3.3.2 Coverage Coordinate System and Grid Geometry

Table 4. Summary of relationship between the CF-netCDF and the DiscreteCoverage profile models: Coordinate System package

CF-netCDF concept	ISO Discrete Coverage concept	Mapping Cardinality	Description and constraints	Rule #
Coordinate System	CV_DiscreteGridPoint Coverage.SC_CRS.SC_C oordinateSystem or CV_DiscretePointCove rage.SC_CRS.SC_Coord inateSystem	1 to 1	Parametric coordinate systems are allowed in CF-netCDF but not in ISO CRS¹. A coordinate system is of type parametric if a physical or material property is used as a dimension [21]; valuable examples are pressure in meteorology and density in oceanography. It is possible that a CF-netCDF Coordinate System entity does not contain any axes allowed in ISO coverage CRS (i.e. only parametric dimension axes); Only spatial and temporal coordinates in a CF-netCDF Coordinate System become part of a coverage CRS, whereas parametric dimension axes are mapped to compound range set components.	1
Spatial/temporal CF Coordinate Variable or subtypes (Latitude Coordinate, Longitude Coordinate, Vertical Coordinate, Time Coordinate)	ISO19123:CV_Discrete GridPointCoverage.CV _GridValueMatrix.CV_ GridPoint.gridCoord or sub-types (e.g. ISO19123:CV_GridValu eMatrix) or ISO19123:CV_Discre tePointCoverage.CV _PointValuePair.ge ometry.GM_Point	1 to 1	The set of monotonically crescent spatial/temporal coordinate variables (shared by a group of CF Variables) maps to the discrete coverage domain set, whose geometry is represented by either a single grid ISO19123:CV_Grid or a set of points, GM_Points	2
Spatial/temporal CF CoordinateVariable or subtypes (Latitude Coordinate, Longitude	CV_DiscreteGridPoint Coverage.SC_CRS.SC_C oordinateSystem.SC_C oordinateSystemAxis or	1 to 1	A CF-netCDF spatial/temporal Coordinate Variable shared by a group of CF Variables.	3

-

 $^{^{1}}$ Future extension to ISO 19111 (see ISO/CD19111-2) may permit parametric CRS, that would accommodate the pressure axis.

Coordinate, Vertical Coordinate, Time Coordinate)	CV_DiscretePointCove rage.SC_CRS.SC_Coord inateSystem. SC_CoordinateSystemA xis			
CF Auxiliary Coordinate Variable	ISO19123:CV_Discrete GridPointCoverage.CV _GridValueMatrix.CV_ GridPoint.gridCoord or sub-types (e.g. ISO19123:CV_GridValu eMatrix) or ISO19123:CV_Discre tePointCoverage.CV _PointValuePair.ge ometry.GM_Point	1 to 1	A CF-netCDF Auxiliary Coordinate Variable realizes a "non-standard" or non monotonically crescent spatial/temporal dimension, which is shared by a group of CF Variables (e.g. CF Feature Collections). Coordinate data values map to the discrete coverage domain set, whose geometry is represented by either a single grid ISO19123:CV_Grid or a set of points, GM_Points	4
CF Auxiliary Coordinate Variable	CV_DiscreteGridPoint Coverage.SC_CRS.SC_C oordinateSystem.SC_C oordinateSystemAxis or CV_DiscretePointCove rage.SC_CRS.SC_Coord inateSystem. SC_CoordinateSystemA xis	1 to 1	A CF-netCDF Auxiliary Coordinate Variable realizes a "non-standard" or non monotonically crescent spatial/temporal dimension, which is shared by a group of CF Variables (e.g. CF Feature Collections).	5
Grid Mapping Variable	ISO19123:CV_Discrete GridPointCoverage.SC _CRS.SC_CoordinateSy stem.type	1 to 1	CF Grid Mapping Variable is used as a container for attributes that define a specific grid mapping.	6

8.3.3.3 CF Discrete Sampling Geometries

Table 5. Summary of relationship between the CF-netCDF and the DiscreteCoverage profile models: Discrete Sampling Geometries package

CF-netCDF concept	ISO Discrete Coverage concept	Mapping Cardinality	Description and constraints	Rule #
CF Multidimensional Array Feature Collection	ISO19123:CV_Discrete GridPointCoverage.CV _GridValuesMatrix.va lues or ISO19123:CV_Discrete PointCoverage.CV_Poi ntValuePair.value	1 to 1	A CF-netCDF Multidimensional Array Feature Collection is a CF Variable whose feature instances are defined on a set of common element axes	14
CF Multidimensional Array Feature Collection	CV_DiscreteGridPoint Coverage.RangeType.A ttributesType entry (i.e. AttributeName, TypeName) or ISO19123:CV_Discrete PointCoverage. RangeType.Attributes Type entry (i.e. AttributeName, TypeName)	1 to 1	A CF-netCDF Multidimensional Array Feature Collection is a CF Variable whose feature instances have common dimensions along the set of common element axes.	15
CF Ragged Array Feature Collection	ISO19123:CV_Discrete PointCoverage.CV_Poi ntValuePair.value	1 to 1	A CF-netCDF Multidimensional Array Feature Collection is a CF Variable whose feature instances have different dimensions along the common set of element axes.	16
CF Ragged Array Feature Collection	ISO19123:CV_Discrete PointCoverage. RangeType.Attributes Type entry (i.e. AttributeName, TypeName)	1 to 1	A CF-netCDF Multidimensional Array Feature Collection is a CF Variable whose feature instances have different dimensions along the common set of element axes.	17

9 Bibliography

- [1] OGC 10-090, NetCDF Core, version 1.0
- [2] OGC 10-091, CF-netCDF Primer: CF-netCDF Core and Extensions
- [3] OGC 10-92, NetCDF Binary Encoding Extension Standard: NetCDF Classic and 64-bit Offset Format, version 1.0.0.
- [4] ISO/TC 211, IS 19123:2005 Geographic information Schema for coverage geometry and functions, ISO/IS 19123:2005.
- [5] UNIDATA netCDF home available at: http://www.unidata.ucar.edu/software/netcdf/
- [6] NetCDF documents available at: http://www.unidata.ucar.edu/software/netcdf/docs/
- [7] NetCDF Users Guide available at: http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html
- [8] NetCDF Climate and Forecast (CF) Metadata Conventions, Version 1.5, 25 October, 2010; available at: http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.5/cf-conventions.pdf
- [9] UDUNITS Software Package, UNIDATA Program Center of the University Corporation for Atmospheric Research (available at http://www.unidata.ucar.edu/software/udunits/).
- [10] CF Conformance Requirements and Recommendations, available at: ?? http://cf-pcmdi.llnl.gov/conformance
- [11] UNIDATA Best Practice recommendations on writing netCDF files, available at: http://www.unidata.ucar.edu/packages/netcdf/BestPractices.html
- [12] NetCDF XML encoding (ncML) available at: http://www.unidata.ucar.edu/software/netcdf/ncml/
- [13] S. Nativi, J. Caron, E. Davis and B. Domenico, "Design and implementation of netCDF Markup Language (NcML) and Its GML-based extension (NcML-GML)", Computers & Geosciences Journal, Volume 31, Issue 9, November 2005, Pages 1104-1118, Elsevier Publication. http://linkinghub.elsevier.com/retrieve/pii/S0098300405001019
- [14] S. Nativi and B, Domenico, "Enabling interoperability for Digital Earth: Coverage access services", International Journal of Digital Earth, Volume 2, Supplement 1, 2009, Pages: 79-104, Taylor & Francis ed., ISSN: 1753-8955 (electronic) 1753-8947 (paper), 2009.
- [15] Mazzetti, P.; Nativi, S., J. Caron, "RESTful Implementation of Geospatial Services", International Journal of Digital Earth, Volume 2, Supplement 1, 2009, pages: 40-61, Taylor & Francis ed., ISSN: 1753-8955 (electronic) 1753-8947 (paper), 2009, 2009.

- [16] NetCDF Climate and Forecast (CF) Metadata Conventions, Version 1.6, 4 May, 2011; available at: ???
- [17] NASA ESDS-RFC-021v0.02, CF Metadata Conventions, April 2010.
- [18] NASA ESDS-RFC-021 Technical Working Group Final Report.

Annex A (normative)

Abstract test suite

A WCS CF-netCDF extension implementation must satisfy the following system characteristics to be conformant with this specification.

A.1 Conformance Test Class: CF-netCDF-DataModel

The OGC URI identifier of this conformance class is: http://www.opengis.net/spec/conf/CF-netCDF.

Tests identifiers below are relative to http://www.opengis.net/spec/netcdf/.

A.2 CF-netCDF Dataset structure

Test id: /conf/CF-netCDF/structural-adherence

Test Purpose: Requirement Errore. L'origine riferimento non è stata trovata.

Test method: TBD