

Notes on Asynchronous Access Services

Authors:

Stefano Nativi, Paolo Mazzetti Italian National Research Council (CNR-IMAA)
Ethan Davis UNIDATA/UCAR

Contributors:

Document type: Discussion Paper

Distribution: Public

Status: Draft

Date: 23 November 2007

Objective
To discuss a general framework for asynchronous interaction with geospatial Web Services
To establish a first draft for a discussion paper to be submitted to the OGC

Scope
Grid Computing support of Access Services (e.g. OWS)
Support of long-running processing
Support of redirection and “shared access”.

Introduction
Several data access use-cases require to support asynchronous interaction in order to avoid to
maintain connections open. In particular this is true for:

- long-running processes creating dynamic resources accessed as features, coverages or maps;
- interaction with asynchronous infrastractures (e.g. grid);

Moreover, to avoid multiple run, a storage functionality could be useful to allow multiple or shared
access to the process output. In this context, the "storage" term implies keeping resources for some
amount of time: the time period a resource is stored might be "persistent" or "long-term", that it
doesn't go away after the first access.

Finally, a push interaction mode would reduce the number of requests allowing to implement
publish/subscribe model for event notification in a complete asynchronous framework.

Architectural note

Data Access OWS typically allow two different bindings:

1. SOAP
2. POX-HTTP (Plain-Old-XML over HTTP)

SOAP binding relates to the W3C Web Services architecture, a Service-Oriented architecture built
on top of the Web Architecture using SOAP information model and encoding [WS-ARCH].

POX-HTTP binding defines an encoding of the Service-Oriented architecture using common Web
technologies. It relates to the W3C Web Architecture, a Resource-Oriented architecture based on
the REST architectural style [WEB-ARCH]. While OWS POX binding is not a RESTful
implementation it is still implicitly resource-oriented since it is based on a uniform interface
(getSomething) on different resources (capabilities, descriptions, coverages, features, etc.).

The choice of one of these different architectures is out of the scope of this document. Anyway all
the details are provided referring to the POX-HTTP approach. A complete RESTful
implementation framework is under development by the OGC REST Sub-Committee.

Functional requirements

We propose to extend data access services to support:

F 1. Asynchronous access. The response data are not provided in the response message. They
can be retrieved later on the same or different URI. This functionality is negotiated. It is
server-initiated (server decides that it cannot provide the response in a “short” time). (If the
client needs an asynchronous data access it should start a new computing task handling the
request).

F 2. Storage. The response is available on a different (stable or temporary) URI for multiple

or shared access. The new URI validity is negotiated between client and server. The client
can require a storage expiration time; the server decides the expiration time.

F 3. Push mode. The requestor is informed when the response is ready.

Implementation

Asynchronous Access

The Asyncronous Access is decided by the server. The Asynchronous Access support must be
reported in the server capabilities.

In case of Asynchronous Access the server answers with a redirection message containing a status
monitor or a reference to it. The status monitor includes one or more of the following fields:

a) the URI where the response is (or will be) available;
b) the estimated time for response completion;
c) the progress in the response completion;

It conforms to the ExecuteResponse defined in the OGC WPS Specification [OGC-WPS], with the
following assumption:

Identifier is an unique identifier built using request parameters. E.g. it could be the URI
used in the KVP encoding.

Note that StatusLocation use (‘Include when “store” is true in request’) is still valid. When a RESTful
binding is used, the StatusLocation information should be reported in the Location header field to allow
automatic redirection.

Storage

The Storage is requested by the client using a store parameter.

 store ::= true | false

The default value is False.

The client can provide an expiration time using a expirationTime parameter.

 expirationTime ::= <Date>

The storage expiration time is provided by the server in the response basing on the client’s request
and server’s capabilities.

‘Push’ Interaction

The push interaction is requested by the client using a callback parameter.

 callback ::= <URI>

The callback parameter is the URI where event notification (e.g. response completion) should be
sent.

The ‘push’ functionality implementation is post-poned.

Use cases

The following table covers the main use cases. For simplicity reasons, almost all of the present
access service implementations achieve pull retrieves without redirection.

 NO STORAGE STORAGE
Pull Push Pull Push

SYNCHRONOUS
INTERACTION

store = False;
(the WCS 1.0 case)

 store = False;
 call-back

parameter must
be provided by
the client

 Server sends the
resource
content, as
soon as
possible

 store = True;
 Server answers

with a
redirection
message

 store = True;
 call-back

parameter must
be provided by
the client

 Server sends the
resource
address, as
soon as the
content is ready

ASYNCHRONOUS
INTERACTION

 store = False;
 Client must re-

issue the same
GetCoverage
request until the
server is able to
provide back the
coverage

 store = False;
 call-back

parameter must
be provided by
the client

 Server sends the
resource content,
as soon as
possible

 store = True;
 Client must

retrieve the
resource status
information in a
polling way

 store = True;
 call-back

parameter must
be provided by
the client

 Server sends the
resource
address, as
soon as the
content is ready

Synchronous
Interactions
Asynchronous
Interactions

(*) Push interactions are shown in gray since they are not fully discussed in this paper

Sequence diagrams
The following figures show the sequence diagrams for different interactions with different storage
capabilities (i.e. storage or no storage capability) and interaction modes (i.e. synchronous or
asynchronous).

The sequences are presented using HTTP request and response messages with KVP parameters
encoding in a RESTful style. This is only for presentation purposes.

No-Storage capability
Synchronous access
Pull retrieving

 Storage capability
Synchronous access
Pull retrieving

No-storage capability
Asynchronous access
Pull retrieving

 Storage capability
Asynchronous access
Pull retrieving

Notes on RESTful binding

This section of the document has to be considered informative. It collects several issues from the
discussion in the WCS+ mailing-list. We considered useful to report it in this discussion paper both for
reference and future enhancements.

Architectural issues

Generally speaking, great attention must be payed to the complexities that the architectural choice
imposes on the design of clients. Indeed every little bit of extra complexity required of a client would
drastically reduce the number of clients that get developed. One server, many clients: keep the client
simple. REST architectures are characterized by uniform interfaces for accessing resources. In the most
common implementations (e.g. over the HTTP protocol) only a very small set of actions is allowed
(typically matching the CRUD pattern). Hence a part of the business logic must be moved from the
server to the accessing nodes (e.g. clients). This means that in a REST architecture we need to build
specific clients applications (e.g. using hyperlink navigation, or specific mobile code loaded on top of a
light client like a browser implementing only access to the uniform interface). On the other side in a
SOA infrastructure we can have generic but complex clients (i.e. capable of handling registry queries,
interpreting service descriptions, calling services and so on).

Resources and representations

The REST architectural style is resource-oriented. It main concerns the identification of resources and
the transfer of their representations.
In the OWS domain different subsets, interpolation, etc. identify different resources and not simply
different representations.

a) In the KVP request encoding (GET) the query string parameters are not the set of input
parameters for a single processing service resource, but actually parts of different
resources identifiers. (Indeed only the parameter FORMAT should be considered
affecting the representation and not identifying the resource. In a perfect REST world its
content should be provided in the Accept header field.).

b) In the XML request encoding (POST) the target resource is a factory resource providing

representations of children which are not individually identified. The requested child is
specified by the XML encoded parameters provided in request message.

In the asynchronous access, what is provided by the possible redirection is not a new resource but a
(temporary) URI to access it.

In the GET-KVP case it is an alias of the original URI for the same resource (a resource can have more
than an URI). For example the resource http://someserver.net/coverages/foo?bbox=... is

assigned a temporary identifier http://someserver.net/coverages/temp/xyz. Anyway the
resource is still retrievable at the original (and authoritative URI). This alias is useful because, for
example, in the time range of its validity the retrieving of the resource representation could be faster
than the retrieving from the original (canonical) URI.

In the POST-XML case the generated URI individually identifies the resource. To maintain the URI
persistance it could be useful to generate URIs which are univocally dependant on the provided
parameters. (The corresponding KVP encoding could be the starting point).

Caching
The REST architectural style has proven to be scalable, but it performs better for mostly-read
applications thanks to the adoption of the multi-layer caching.
In an OWS data access service the cache management poses several issues:

a) In the XML encoding (POST) the cache should maintain the relationship between the XML-
encoded parameters (message body) and the returned representation. This can be difficult due to
the fact that different XML documents can have the same semantics.

b) In the KVP-encoding (GET) the cache should maintain the relationship between the URI (and
header fields values) and the returned representation. Anyway it is not easy to recognize that
two requests are the same, in particular due to the query string which is made of non-
hierarchical parameters. (E.g. two requests could only differ for the parameters order.). While
some hierarchical parameters (e.g. name) can be moved from the query string to the URI path,
others are intrinsically non-hierarchical (e.g. bbox) and must remain part of the query string.

c) The same resource could be available in different formats. It would be useful to support
resource caching with format transformation to repeat the extraction process for requests
differing only for format.

This problem can be solved considering smarter cache managers with advanced functionalities:

1. Request canonicalization. MD5 hash of the 'canonicalised' request & using this as the key in
a key-value-pair map; i.e. you use the request hash to look up a previous response (if any).
This is how standard web-proxies. Issues are (1) how many requests to store, & (2) how do
you know when the cache expires.

2. Request identification. Convert the query string into a low-level set of data extraction
parameters (i.e. the parameters that are passed to NetCDF libraries for example, to extract a
block of data) and cache these low-level parameters instead. These parameters typically
consist of a file name, internal variable id and a set of indices for each axis in the data file.
Your system will then parse the query string into these low-level parameters and check for
identical parameters in the cache.

3. Raw data caching. To allow people to download the same data in different formats without
doing the extraction twice.

References

[OGC-WPS]
 OGC, “OpenGIS® Web Processing Service”, 2005

 http://portal.opengeospatial.org/files/?artifact_id=13149&version=1&format=pdf
 [WEB-ARCH]
 W3C, “Architecture of the World Wide Web, Volume One”, 2004,
http://www.w3.org/TR/webarch/
[WCSPLUS]
 WCS+ Mailing-list, http://www.unidata.ucar.edu/mailing_lists/archives/wcsplus/
[WS-ARCH]
 W3C, “Web Services Architecture”, 2004, http://www.w3.org/TR/ws-arch/

	Notes on Asynchronous Access Services
	Objective
	Scope
	Introduction
	Architectural note

	Functional requirements
	Implementation
	Asynchronous Access
	Storage
	‘Push’ Interaction

	Use cases
	Sequence diagrams

	Notes on RESTful binding
	Architectural issues
	Resources and representations
	Caching

	References

