The Promise of Long-Range Lightning Detection in Better Understanding, Nowcasting, and Forecasting of Maritime Storms

Collaborators in the Development of the Pacific Lightning Detection Network (PacNet)

- Dr. Antti Pessi, UH
- Prof. Ken Cummins, UA
- Nick Demetriades, Martin Murphy, Burt Pifer, Vaisala Inc.
- Dr. Tiziana Cherubini, UH
- This research is supported by ONR, NASA, and Vaisala

Long-Range Lightning Data during TCS08 9/19/08

Outline

I. Background

- II. Calibrating Long-Range Lightning Networks¹
- III. Relationships Between Lightning, Precipitation, and Hydrometeor Characteristics²
- IV. Nowcasting Applications for Data Streams³
- V. An Operational Lightning Data Assimilation System at UH⁴

References

- 1. Pessi, A. T. et al., 2008: J. Atmos. and Ocean. Tech., 26, 145–166.
- 2. Pessi, A. T., and S. Businger, 2009: J. Appl. Meteor., 48, 833-848.
- 3. Squires, K. and S. Businger, 2008: Mon. Wea. Rev., 136, 1706–172.
- 4. Pessi, A. T., and S. Businger, 2009: Mon. Wea. Rev., In press.

I. Background

Types of Lightning Discharge Cloud-to-ground (CG) Flash

- Negative CG flashes usually produce 3-4 "return strokes", high-current impulses accompanied by a strong light emission.
- In the center flash, 3 strokes were resolved in time by panning the camera.

3

MET at UH

Cloud-to-Cloud Flashes

- Intracloud (IC) and cloud-to-cloud flashes do not have return strokes.
- These are the majority of discharges, typically comprising 60-80% in non severe storms and up to 99-100% in some severe storms.
- Long-range lightning sensors detect only a small fraction of IC flashes (<5%).

Background: VLF Signal Propagation

- The wave energy produced by cloud-to-ground (CG) discharges peaks in the very low frequency (VLF) regions of the spectrum (3-30 kHz). *Sferics* can propagate effectively in the earth-ionosphere waveguide for thousands of kilometers.
- VLF signals attenuate less during the night because the gradient in electron density with height increases (ionosphere is more sharply defined at night).
- VLF signals attenuate significantly less over the ocean than over land because of higher electrical conductivity of salt water.

VLF Signal Waveforms

- a) 264 km ground wave
- b) 860 km ground wave followed by a single-hop ionospheric reflection of opposite polarity.
- c) 3400 km multiple ionospheric components.

Note that the flash changes electric field polarity at each reflection.

Detection Efficiency

DE* depends on *DE = (number of flashes detected/actual number of flashes) x 100

- signal attenuation distance between the lightning and sensors
- strength of the lightning discharge peak current
- nature of the waveguide surface conductivity and diurnal cycle in electron density gradients
- · specifics of the hardware

Because no high-quality lightning data are available over the Pacific Ocean, lightning data detected by the National Lightning Detection Network (NLDN) over the U.S. were time-correlated with data from a PacNet test sensor located in Tucson, Arizona to calibrate the sensor and to develop the DE and LA models.

Signal Attenuation

Exponential loss with distance sets a lower bound on the space constants for day and night, due to the involvement of land, as opposed to salt water, in the propagation path to the Tucson test sensor.

Attenuation function :

$$A = \frac{\alpha_f}{R} \sqrt{\left(\frac{\theta}{\sin(\theta)}\right)} \exp\left(-\frac{R}{\lambda_f}\right)$$

- α: scaling constant
- λ : e-folding distance (space constant)
- R: distance to lightning
- θ : R/ R_{e}
- $R_{\rm e}$: radius of the earth

DE Model Calibration for Ocean Condition

- Observe the reference peak current distribution using PREPA CG data striking the sea near Puerto Rico.*
- Use this distribution in the DE model adjusting the day and night space constants to produce the observed DE in Puerto Rico.
 - ★ Puerto Rico Electric Power Authority (PREPA) local lightning detection network was used, which has DE of >90% and LA of ~0.5 km.

Dr. Pessi in Dutch Harbor, AK installing a Vaisala detector that utilizes an innovative combined time-of-arrival (TOA) and direction finding (DF) method. The gain has been set to a high level and the bandwidth has been adjusted to have greatest sensitivity in the VLF band to receive weak, ionospherically reflected sferics.

DE Model Calibration for Ocean Condition

- Use the observed peak current distribution in the DE model adjusting the day and night space constants to reproduce the observed DE in Puerto Rico.
- Employ the resulting space constants and peak current distribution in the PacNet configuration.

III. Relationships Between Lightning, Precipitation, and Hydrometeor Characteristics over the North Pacific Ocean*

The Morphology of Eyewall Lightning Outbreaks in Two Category Five Hurricanes

Composite Radial Distribution of Lightning in 7 Named Typhoons

Composite central pressure and CG lightning strikes within 50 km (300 km bottom) of the storm centers for all seven tropical cyclones in TSC08.

4. Applications – Operational Lightning Data Assimilation System at the University of Hawaii

Northeast Pacific Storm 18-20 December 2002

Pessi, A. and S. Businger, 2009: Monthly Weather Review. In Press.

Lightning Data Assimilation into NWP Models

- Previous lightning data assimilation work:
 - Alexander et al. 1999; Chang et al. 2001; (latent heating)
 - Papadopoulos et al. 2005; (moisture profiles)
 - Mansell et al. 2006; (BL moisture and updraft speed)
 - Weygandt et al. 2006; (hydrometeor fields)
- What is new in this study?
 - Long-range lightning data over the open ocean.
 - Lightning rates quantified using the detection efficiency model.
 - Experiment design has been made operational for real-time forecasts.

Latent Heating Assimilation Method

Create an input file before the model run starts

1. Apply DE model to quantify the lightning rates (lat, lon, LT at each flash location).

2. Convert the lightning rates to rainfall rates over the whole domain and each timestep using the relationship formula.

Assimilation method

- The method was programmed to WRF's Kain-Fritsch convective parameterization scheme.
- The method uses Newtonian relaxation (nudging) technique to adjust the model's vertical latent heating profiles according to 'observed' rainfall rates.
- Adjustment is done in the model's convective temperature tendency equations.
- The method is a 4DDA-type assimilation method, where nudging occurs during the forecast run.

Operational System Design

- WRF model in Linux cluster
- Model initialized with LAPS (Local Analysis and Prediction System)
- Boundary conditions from GFS every 6 hours
- Horizontal resolution 15 km, 40 vertical levels, currently no nesting
- Model time step 64 s

Model integration 60 h

Assimilation 6 h

- Kain-Fritsch convective parameterization scheme
- Horizontal radius of influence 0.125°
- Time window of influence ±15 min
- Vertical latent heating profiles adjusted every timestep

Advection of High Theta-e Air into the Storm Center

<u>Upper figure:</u> (a) CTRL, (b) LDA Wind speed at 400 hPa (m/s, shaded) Temperature at 400 hPa (K, contours)

Latent heating, as indicated by the high lightning rates, increased temperature and ∇T across the front. This resulted in increased along-front winds, consistent with thermal wind balance.

Lower figure:

Difference between LDA and CTRL in: Virtual temperature (K, shaded) Geopotential height (m, contours)

Enhanced advection of warm air over the storm center dropped the surface pressure hydrostatically.

Vaisala's Expanding Lightning Network

- Two results from our PacNet research have facilitated a breakthrough in long-range lightning detection performance.
- 1. Documentation of the slow signal attenuation over water and increased sensor sensitivity results in greater network range.
- 2. Improved signal processing that ingests the whole wave form allows separation of ground wave from 1st and 2nd ionospheric hops, greatly reducing location errors.
- These innovations are being implemented by Vaisala in a new network that promises have global reach.

Summary

- Advent of GPS and microprocessors opened the door for long-range lightning detection.
- Performance of Long Range Lightning Detection Networks must be known for quantitative applications of the data.
- Calibration of PacNet showed that the space constant over water is larger than previously estimated (>10,000 km) and that the whole wave form must be processed for optimal network performance.
- Relationships between lightning rate and convective precipitation rate are robust over the Pacific, leading to nowcasting and data assimilation.
- PacNet data assimilated operationally in Hawaii in WRF to improve regional ocean forecasts.

Community Lightning Model – Research / Program*

Basic research #	Observation/validation	Operational products
Numerical methods #	Map in-situ electric field =	Improved global/mesoscale prediction =
Data assimilation [#]	Medium long-range lightning detection =	Probabilistic lightning forecasting =
Case studies: - <u>cyclogenesis</u> - <u>cyclone</u> intensification =	High temporal/spatial resolution optical imaging #	Initialization of tropical cyclones and maritime cyclogenesis #
Microphysics *	Mixed phase microphysics structure	Fire weather, lightning caused
Electrification/discharge parameterizations: varying complexity	Parameterization validation #	Aircraft routing, refueling Maritime/fleet safety #

* Ideas developed at a recent "Workshop on use of novel lightning data and advanced modeling approaches to predict maritime cyclogenesis," held in Monterey, CA March 24-26, 2009.

