RHOAPS

Real-time Hydrology Ocean Atmosphere Prediction System

Pronunciation: "Ropes"

Motto: More than just THREDDS

Key Aspects

- Integrated real-time data systems
 - Atmospheric
 - Hydrologic
 - Coastal oceans
 - Societal impacts
- Coupled forecast systems
- Analysis and display alternatives
 - Atmospheric and oceanographic "5D" numerical analysis
 - GIS and database management decision support

Unidata Focus

- Real-time, event-driven, "subscription-based" push data delivery to user sites (IDD, LDM)
- Data transformation for use at sites (Decoders)
- Desktop applications for data analysis and visualization (McIDAS, GEMPAK, IDV)
- Standards-based, web services technology to enable remote catalog, metadata, data access (netCDF, THREDDS, OPeNDAP, ADDE, OGC WCS)
- Expertise in community of more that 100 university departments

Atmospheric Data Sources and Modeling Tools

- NCEP (Global and National Forecasts)
- NWS (Radar)
- NASA (Modis?)
- NCDC and NCAR (Archives)
- Unidata IDD and THREDDS technology
- WRF local weather forecast model
- Local data assimilation module for WRF

Hydrological Focus

- Hydrological data systems (CUAHSI Hydrological Information Systems)
- Streamflow data
- Hydrological observatory datasets
- Drainage basin topological datasets
- GIS analysis and display systems

Hydrological Data Sources and Modeling Tools

- Local Governments: utilities, planning, tax, engineering, stormwater, and GIS departments
- State Governments: natural resources, transportation, and environmental agencies
- Federal Government:
 - USGS: Digital Elevation Models (DEMs), Digital Orthophoto Quadrangles (DOQs), hydrography, stream gaging stations, landuse/land cover
 - EPA: streams and monitoring data
 - NRCS: soils (both state STATSGO (State Soil Geographic database) and county-level 'SSURGO' (Soil SURvey Geographic database)
- CUAHSI HIS data systems
- Coupled Hydro meteorological models

Coastal Oceans Focus

- SCOOP (SURA Coastal Oceans Observing Program)
- Near-shore bathymetry
- Storm surge models
- Hydrologically correct Digital Elevation Maps
- GIS and oceanographic analysis and display systems.

Recent Joint Efforts

- Support tools for cataloging and serving data at sites (THREDDS, OPeNDAP, ADDE, WCS)
- Transform datasets for access in Grid environment (LEAD, TACC, NCAR ESG)
- Connect datasets to real-time processing (LEAD WRF model, ADAS assimilation, ADAM mining)
- Integrate datasets into RDBMS and GIS systems (CUAHSI, TACC, ESRI, OGC)

Coastal Oceans Data Sources and Modeling Tools

- NOAA National Geodetic Survey: Coastal Survey Maps
- NOAA Ocean Service: Estuarine Bathymetry
- USGS: DEMs
- National Federation of Regional Coastal Ocean Observing Systems (RCOOS)
- Surge, wave, inundation models
- Coupled Surge meteorological models

Interoperability Issues

- Green items represent slowly changing datasets of discrete objects that tend to be available in GIS or other DBMSbased systems (e.g., land use, infrastructure, digital elevation model)
- Blue items represent rapidly changing, real-time continuous-function datasets often delivered via IDD push and typically stored in local file systems (e.g., radar, satellite, local weather observations)

Local Weather Forecast Data Needs

- National forecast model output for boundary conditions and possibly for initialization
- Data assimilation
 - Local weather station observations
 - Full 3D radar scan observations
 - Satellite imagery (e.g. Modis)
 - Local topography
 - Local land characteristics

Hydrological Model Data Needs

- DEM
- Hydrologically correct drainage paths:
 - Topographic relief
 - Culverts
 - Stream channels
- Land characteristics (permeability)
- Streamflow
- Soil moisture
- Precipitation

Coastal Waves, Surge, Inundation Model Data Needs

- Near-shore bathymetry
- Hydrologically correct Digital Elevation Model
- Wind field
- Precipitation
- Ensemble modeling approach under development

Impacts and Decision Support Data Needs

- Infrastructure
- Demographics
- Communication systems
- Contact information
- Digital Flood Insurance Rate Map (DFIRM) – measure of vulnerability
- Forecast of Probably Threatened Areas

Primary Datasets Needed for Coupled System

- National forecast model output
- Radar observations
- Streamflow
- Hydrologically correct DEMs
- Near shore bathymetry
- Infrastructure
- Demographics

Primary Tools for Coupled System

- IDD/LDM
- THREDDS (incl. netCDF,OPeNDAP, WCS)
- WRF local model
- Data assimilation module for WRF
- Coupled WRF-Hydro Model
- Coupled WRF-Surge Model
- ArcHydro
- GIS Database systems
- Integrated Data Viewer
- Grid Technologies
- Other ???

Interoperability Issues Summary

- Traditional atmospheric and oceanographic data systems – continuous, rapidly changing datasets
- GIS and RDBMs systems employed in hydrology, infrastructure and societal impacts realms – discrete features
- Integration of data from both fields needed
- Analysis and display capabilities of both communities needed

Web Services for Data System Interoperability

Overarching Goal

- NOT to solve the many scientific issues in the field
- But to develop the infrastructure to facilitate innovative interdisciplinary research and education