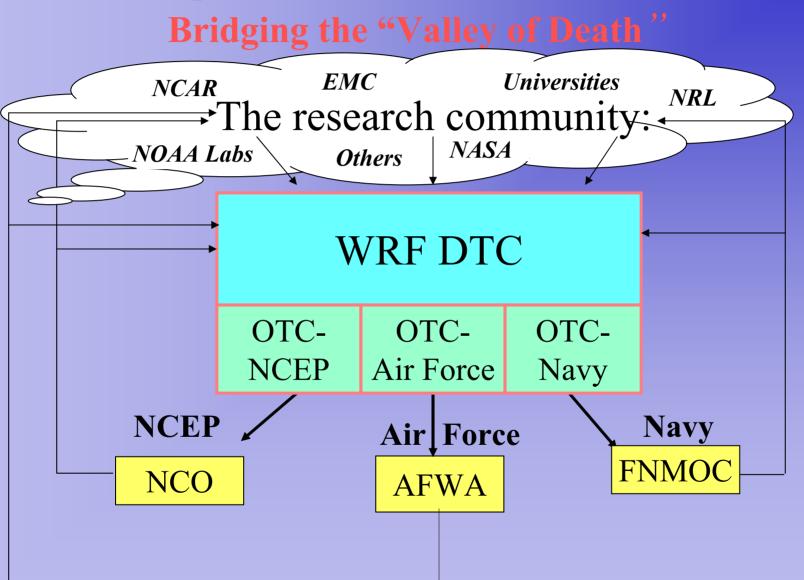
The WRF Developmental Testbed Center (DTC)


Bob Gall

A facility where the NWP research and operational communities interact to accelerate testing and evaluation of new models and techniques for research applications and operational implementation, without interfering with current operations

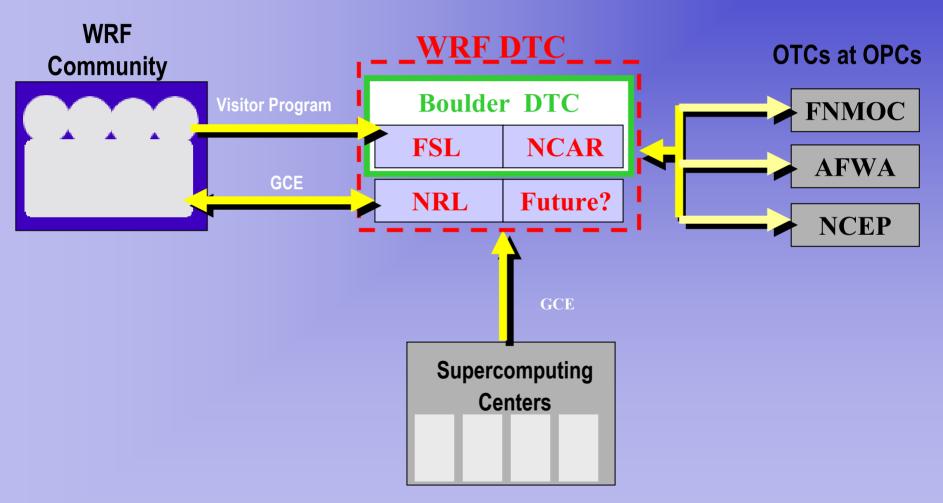
Why Do We Need a DTC?

- Currently in the US the transfer of new NWP science and technology from research into operations is inefficient.
 - Primarily conducted at the operational centers and/or their associated research organizations
 - It does not take advantage of the considerable talent elsewhere in the research community
- Presently the research and operations NWP communities have insufficient opportunities to collaborate in an operations-like environment.
- There is nowhere that these communities can join to perform extensive rigorous model testing using a common model and operational data stream without disrupting operations.

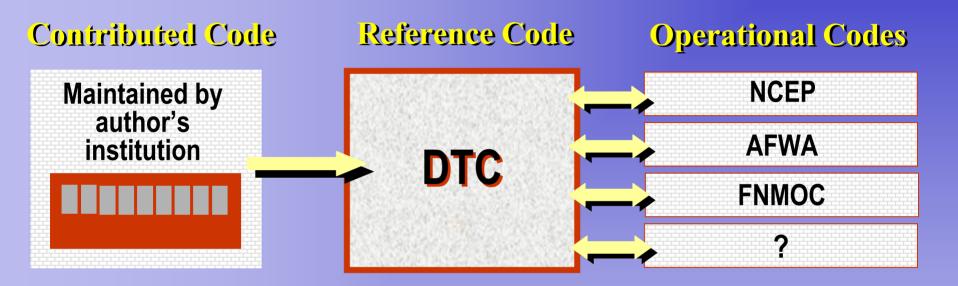
The Flow of Science from Research to Operations in the WRF Era:

Goals

- Link Research and Operational Communities
- Speed transition of research results into operations
- Accelerate improvement in weather forecasts
- Develop and test promising new NWP techniques
- Provide an opportunity for NWP community to perform cycled or real-time tests of model and data assimilation systems


Basic Structure of the DTC

- The DTC will be a distributed facility with Components in:
 - Boulder (Boulder DTC)
 - NRL Monterey (NRL DTC)
 - Other?
- The Boulder DTC will have components:
 - NCAR (NCAR DTC)
 - FSL (FSL DTC)


Structure of a Distributed Component

- Similar for all components. There will be
 - A director of the distributed component who will serve as a deputy director of the full DTC
 - A clearly defined staff who reports to that director (with a significant fraction of their time dedicated to the DTC)
 - A budget
- The deputy directors of the distributed components would form an executive committee that would guide DTC activities and coordinate among the various components
- One of the deputy directors will be the DTC Director
- Members of a component would make extended visits to other components

The DTC Architecture

WRF Code Systems

Accomplishments FY03-04

- Strong working relationship between central DTC partners (FSL and NCAR), NCEP, and AFWA
- Completed the basic WRF Reference Code (including NCEP Nonhydrostatic Mesoscale Model (NMM) and NCAR Advanced research WRF (ARW) dynamic cores)
- Ported NCEP Post and Verification codes and the NMM code to FSL computer. These codes were also transferred to NCAR, NCEP, & AFWA computers
- Tech transfer: WRF ARW core implemented at NCEP for real-time predictions as part of Initial Operating Capability
- Completed WRF Test Plan
 - Critical for NCEP Initial Operating Capability by Oct04
 - Began evaluating results—presented at the WRF workshop in June and being written for publication presently

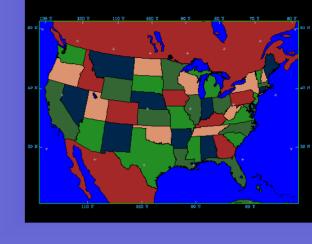
Precipitation (Daily) Forecast Hour=24 August 1 - 31, 2002 Nobs = 223146 83921 36074 13310 6415 3219 744 241 33 6.000 West / ARW / RUC / NCAR West / ARW / RUC / NCEP 5.000 ── West / NMM / Eta / NCAR 4.000 — West / NMM / Eta / NCEP - ◆ · West / Eta Bias 3.000 2.000 1.000 0.000 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 .01 .10 .25 .50 .75 1.0 1.5 2.0 3.0

Threshold (inches)

WRF/DTC

Accomplishments FY03-04

- Began providing WRF code to the community (EM core, NMM will be available in version 2.0, Fall?)
- Real-time cloud resolving (4-km) WRF experiment over Midwest (May-July)
- First ensemble WRF application developed (in support of predicting winter road conditions for NHWA)
- First use of WRF in an operational forecast environment with displays on AWIPS (at the Jacksonville WFO)
- Obtained needed support to initiate a visiting scientist program for the DTC in summer 2004


FY04 Visitor Program

- Bill Gallus and Isidora Jankov (Iowa State University)
 - Sensitivity of WRF warm season forecasts to changes in physics, dynamic core and grid resolution
 - Verification techniques
 - Fastest version of WRF that still allows convection resolving resolution (grid spacing, physics time-step, fastest physics)
- Dave Dempsey (San Francisco State University)
 - Investigate optimal model physics for WRF (cloud microphysics, precipitation, and boundary layer)
 - Develop and test additions to the WRF physics
- Ying Lin (NCEP)
 - Develop a "Relaxed Threat Score" and other verification techniques.

FY05 Annual Plan

- Determine configuration of WRF that can be run at cloudresolving resolutions in the High Resolution Window (HRW)
- Optimal configuration of ensemble for the HRW
- Conduct the first Tutorial for the NMM core
- Conduct a Hi-Res WRF real-time winter forecast experiment over the CONUS

DTC Winter Forecast Experiment

- The WRF Developmental Testbed Center will conduct a high resolution NWP forecast experiment during the winter season
 - December 2004-March 2005
 - Horizontal resolution—5km
 - 38 vertical levels
 - Domain Size—CONUS
 - Emphasis on the Eastern US
 - Forecast period 48 hours

Computer resources

• It will be run on the FSL (NMM core) and NCAR (ARW core) computers

- Forecasts would be made available to NWS forecasters through AWIPS, FXNet and the WEB (http://DTCenter.org)
 - The research community will have assess through the WEB

FY05 Annual Plan

- Continue visitor program
 - An additional visitor this calendar year?
 - Announcement of opportunity
- Begin making NMM core available to the community
 - Offer has been made to add an associate scientist to the DTC.
 This will be his/her primary responsibility
- Convene the first Advisory Panel meeting
- Complete a DTC Terms of Reference

The Long Term Plan Phased Implementation Strategy

• Phase 1

(FY03-FY05) Implement a minimal Central DTC

- Limited Staff at NCAR and FSL
- Emphasis on a visitor program
- Conduct tests similar to those currently underway
 - Will include a series of real-time experiments with forecaster participation (Hi Res large domain, corresponding ensemble)
- Develop the distributed computing resource
 - GCE development?
- Develop and implement the distributed DTC concept

The Long Term Plan Phased Implementation Strategy

• Phase 2

FY06-FY07 Fully Functional DTC

- Gradual ramp-up to full staff
- Entire WRF model maintained for and made available to the community
- Transparent use of the distributed computing resources
- Full and competitive visitor program
- DTC fully responsive to the WRF Research Applications and Operational Requirements Boards

• Phase 3

FY08-FY09 Unified Modeling in the DTC

Ocean Modeling, Global modeling...

Current staffing in the Central DTC

NCAR

- Director (Gall .75 FTE)
- Project Scientist (Nance, 1.0 FTE)
- Associate Scientist (Meral Demirtas, will start in Oct)
- Total (2.75 FTE)

• FSL

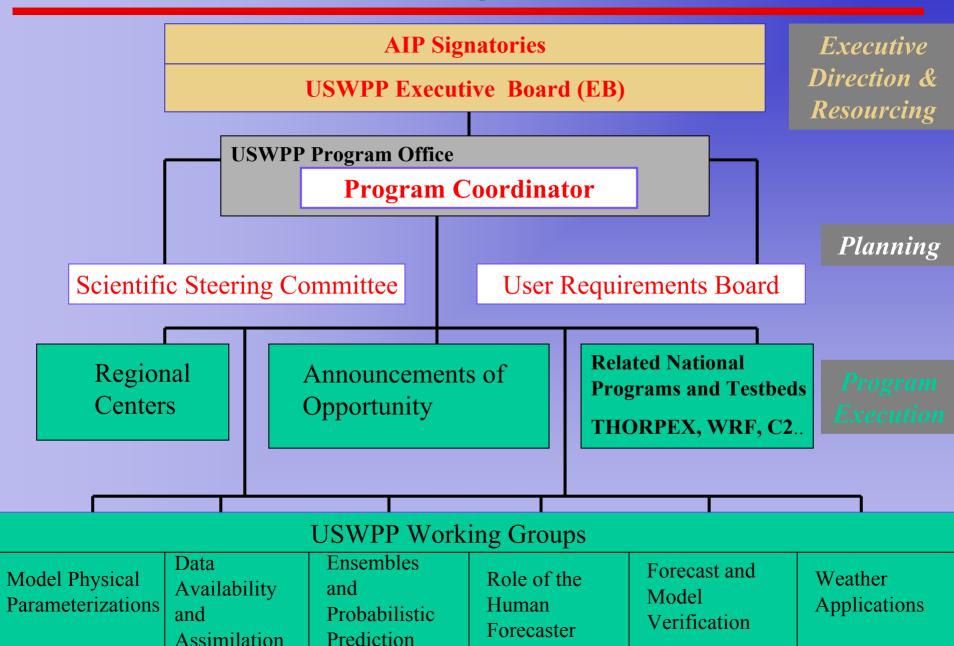
- Deputy Director (Koch, .2 FTE)
- Project Scientist Contractor (Bernadette, .5 FTE)
- Software porting/development (Harrop, Hart, Tierney, 1.1 FTE)
- Scientific Programmers (Loughe+Middlecoff, .7 FTE)
- Total (2.5 FTE—1.75 contributed from FSL)

FY 05 Funding (Central DTC) Threshold

•	NCAR	
	Salaries	\$ 674,094
	– Travel	\$ 29,649
	Visitor Program	\$ 70,220
	Advisory Panel	\$ 15,605
	Total (burdened)	\$ 789,56 <u>7</u>
•	NCAR contribution	<u>\$ 257,500</u>
•	Total needed from NOAA	\$ 532, 067
•	FSL	
	Salaries	\$ 419,870
	– Travel	\$ 7,000
	Total (burdened)	<u>\$ 426,870</u>
	Cosponsored 1.75 FTE	<u>\$ 375,000</u>
•	Total needed from NOAA	
•	Total Budget	\$1, 590,937

Eventual Annual Budget needed for the Central DTC

•	Visitor Program	\$1.0 M
•	13 FTE technical staff	\$2.9 M
	(Including staff at FSL)	
•	Other personnel 3 FTE (Admin, Director)	\$0.7 M
•	Enhancement to computing,	
	networking and storage	\$0.6 M
•	Space	\$0.2 M
•	Travel and other	\$0.1 M
	Tatal	<u>ѝ</u>


Sustained substantive support from NWS and OAR is needed, beginning in FY05, for the DTC to function. 21

i otai

55.5 小

END

USWPP Management Structure

